Eficacitatea unor pesticide în prevenirea atacului de Xylosandrus germanus (Coleoptera: Curculionidae, Scolytinae), în condiții de laborator

Autori

  • Nicolai Olenici Institutul Național de Cercetare-Dezvoltare în Silvicultură ''Marin Drăcea, SCDEP Câmpulung Moldovenesc, 73bis, Calea Bucovinei, 725100 Câmpulung Moldovenesc, Romania.

DOI:

https://doi.org/10.4316/bf.2022.015

Cuvinte cheie:

Xylosandrus germanus, Btk, acetamiprid, Quassia amara extract, spinosad, mortalitate, eficacitate, efecte subletale

Rezumat

Xylosandrus germanus (Blandford, 1894) este o specie de gândaci de ambrozie invazivă, care s-a răspândit deja în cea mai mare parte a teritoriului României și care reprezintă un potențial dăunător pentru silvicultură, pomicultură și viticultură. Obiectivul cercetărilor prezentate în lucrare a fost identificarea unor pesticide utilizabile în UE și acceptate de FSC, care să fie eficace în prevenirea atacurilor cauzate de această specie. În cadrul unui experiment de laborator, organizat într-un bloc complet randomizat cu cinci variante și opt repetiții, s-au testat patru insecticide: BactoSpeine DF (54% Bacillus thuringiensis subsp. kurtsaki), Mospilan 20 SG (20% acetamiprid), Konflic (50% extract de Quassia amara + 50% săruri de potasiu din acizi grași) și Laser 240 SC (240 g/l spinosad). S-a studiat mortalitatea cauzată de pesticide, reducerea intensității atacului și efectele subletale (asupra fecunditatății insectelor și a dezvoltării descendenților). Toate pesticidele au fost administrate în concentrație de 1% (excepție făcând doar primul, aplicat în concentrație de 10%) pe suprafața unor segmente subțiri de tulpini de fag (ST), care au fost scufundate timp de două minute în soluțiile preparate și apoi au fost lăsate o oră să se zvânte. Pentru a fi atractive față de insecte, anterior tratării ST au fost ținute timp de 24 ore în soluție apoasă de etanol 48%. ST au fost puse în borcane transparente, fiecare cu câte 20 femele de X. germanus colectate în aceeași zi din teren. Experimentul s-a derulat pe parcursul a 32 zile, timp în care temperatura medie în locul de testare a fost de 24,1° C, umiditatea relativă de 81,6% și lumina de maximum 250 lucși, 15 ore lumină și 9 ore întuneric. Mortalitatea cumulată a insectelor a fost cuprinsă între 10,6% (la martor) și 61,9% (la spinodad), diferențe semnificative înregistrându-se doar între acetamiprid și spinosad, pe de o parte, și celelalte variante, pe de altă parte. Intensitatea atacului a variat de la 8,0 ± 1,9 galerii/ST (media ± abaterea standard) (la spinosad), până la 18,7 ± 1,1 galerii/ST (la martor) și diferențe semnificative s-au înregistrat tot numai între acetamiprid și spinosad, pe de o parte, și celelalte variante, pe de altă parte. Deoarece unele femele au murit sau au părăsit galeriile după ce au pătruns în lemn, numărul de femele cu descendenți per ST (FDST) a fost puțin mai mic decât intensitatea infestării. Sub toate cele trei aspecte (mortalitate, reducerea intensității infestării și reducerea FDST), cel mai eficace a fost spinosadul (57,4%, 57,2% și respectiv 66,7%), urmat de acetamiprid (46,6%, 53,5%, 60,5%), celelalte două produse având eficacități sub 10-20%. Numărul mediu de descendeți/ST a fost cuprins între 165,1 ± 105, 6 (la acetamiprid) și 265,0 ± 84,5 (la martor), dar diferențele dintre variante nu au fost asigurate statistic la p = 0,05. Fecunditatea femelelor care au supraviețuit interacțiunii cu pesticidele a variat de la 13,1 ± 6,5 descendenți/femelă (la Konflic), până la 23,9 ± 11,3 descendenți/femelă (la spinosad). Niciunul dintre pesticidele nu a determinat o reducere a fecundității, iar spinosadul a determinat chiar o creștere semnificativă. La data sistării experimentului, 61% dintre descendenții femelelor folosite în experiment ajunseseră în stadiul de adult, dar descendenții femelelor care au venit în contact cu acetamiprid sau cu spinosad au avut o ușoară întârziere în dezvoltare față de cei din celelalte variante, ponderea adulților în totalul descendenților din aceste variante fiind semnificativ diferită de cea de la varianta martor. Rezultatele obținute indică faptul că – în concentrațiile folosite – doar două dintre produsele testate (Mospilan 20 SG și Laser 240 SC) au avut o eficacitate suficient de bună pentru a fi luate în considerare în experimente de teren. S-au observat unele efecte subletale interesante ale spinosadului și acetamipridului (stimularea fecundității și posibila frânare a dezvoltării preimaginale), necunoscute anterior în cazul acestei specii, și care necesită a fi investigate suplimentar.

Descărcări

Datele despre descărcarea articolului nu sunt încă disponibile.

Vizualizări

Afișarea vizualizărilor va avea loc în curând ...

Referințe

Abbott W.S., 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265-267. DOI: https://doi.org/10.1093/jee/18.2.265a

Abouelghar G.E., Sakr H., Ammar H.A., Yousef A., Nassar M., 2013. Sublethal effects of spinosad (Tracer®) on the cotton leafworm (Lepidoptera: Noctuidae). Journal of Plant Protection Research 53(3): 275-284. DOI: https://doi.org/10.2478/jppr-2013-0041

Adang M.J., Crickmore N., Jurat-Fuentes J.L., 2014. Diversity of Bacillus thuringiensis crystal toxins and mechanism of action. Advances in Insect Physiology 47:39-87. DOI: https://doi.org/10.1016/B978-0-12-800197-4.00002-6

Addinsoft, 2021. XLSTAT - A complete statistical add-in for Microsoft Excel. https://www.xlstat.com/en/

Agnello A., Breth D., Tee E., Cox K., Warren H.R., 2015. Ambrosia beetle – an emergent apple pest. New York Fruit Quarterly 23: 25–28.

Agnello A.M., Breth D.I., Tee, E.M., Cox K.D., Villani S.M., Ayer K.M., Wallis A.E., Donahue D.J., Combs D.B., Davis A.E., Neal J.A., 2017. Xylosandrus germanus (Coleoptera: Curculionidae: Scolytinae) occurrence, fungal associations, and management trials in New York apple orchards. Journal of Economic Entomology 110: 2149–2164. DOI: https://doi.org/10.1093/jee/tox189

Ali Q., ul Hasan M., Saleem S., Ranjha M.H., Nawaz R., Qasim M.U., Anjum N.A., 2019. Effect of reduced risk insecticides on the different developmental stages of Tribolium castaneum (Herbst). Journal of Agricultural Research 57(3): 159-166,

Athanassiou C.G., Kavallieratos N.G., Yiatilis A.E., Vayias B.J., Mavrotas C.S., Tomanović Ž., 2008. Influence of temperature and humidity on the efficacy of spinosad against four stored-grain beetle species. Journal of Insect Science 8(1): 2008, 60, DOI: https://doi.org/10.1673/031.008.6001

Bacci L., Lupi D., Savoldelli S., Rossaro B., 2016. A review of Spinosyns, a derivative of biological acting substances as a class of insecticides with a broad range of action against many insect pests. Journal of Entomological and Acarological Research 2016, 48:5653. DOI: https://doi.org/10.4081/jear.2016.5653

Boina D.R., Onagbola E.O., Salyani M., Stelinski L.L., 2009. Influence of posttreatment temperature on the toxicity of insecticides against Diaphorina citri (Hemiptera: Psyllidae). Journal of Economic Entomology 102(2): 685-691. DOI: 10.1603/029.102.0229

Böll S., Hofmann H., Niethammer M., Schwappach P., 2005. Erstes Auftreten des Schwarzen Nutzholzborken¬käfers Xylosandrus germanus an Weinreben in Europa. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 57: 57-63.

Castresana J.E., Puhl L., 2018. Eficacia de insecticidas botánicos sobre Myzus persicae (Sulzer) y Aphis gossypii (Clover) (Hemiptera: Aphidiae) en el cultivo de pimiento (Capsicum annuum L.) bajo cubierta. Revista Colombiana de Ciencias Hortícolas 12(1): 136-146. DOI: https://doi.org/10.17584/rcch.2018v12i

Cutler G.C., 2013. Insects, insecticides and hormesis: evidence and considerations for study. Dose-Response 11:154–177. DOI: 10.2203/dose-response.12-008.Cutler

Cutler G.C., Guedes R.N.C., 2017. Occurrence and significance of insecticide induced hormesis in insects. In Duke S.O., Kudsk P., Solomon K. (Eds.): Pesticide Dose: Effects on the Environment and Target and Non-Target Organisms. ACS Symposium Series 1249, American Chemical Society, Washington, DC, pp. 101-119.

de Barjac H., 1978. Une nouvelle variété de Bacillus thuringiensis très toxique pour les moustiques: B. thuringiensis var. israelensis sérotype 14. Comptes rendus hebdomadaires des séances de l'Académie des sciences. Série D: Sciences naturelles 286(10): 797-800.

Danelski W., Badowska-Czubik T., Rozpara E., Pniak M., 2014. A study on the possibility of limiting damage to fruit by the apple sawfly (Hoplocampa testudinea Klug) in organic apple orchards. Journal of Research and Applications in Agricultural Engineering 59(3): 27-30.

Danelski W., Badowska-Czubik T., Rozpara E., 2015. Assessment of the effectiveness of plant-derived pesticides in controlling the black cherry aphid Myzus cerasi F. in organic growing of sweet cherry. Journal of Research and Applications in Agricultural Engineering 60(3): 21-24.

Doerr M.D., Brunner J.F., Smith T.J., 2008. Biology and management of bark beetles (Coleoptera: Curculionidae) in Washington cherry orchards. Journal of Entomological Society of British Columbia 105: 69-81.

Dutto M., Ferracini C., Faccoli M., 2018. Gravi infestazioni di Xylosandrus germanus (Blandford, 1894) (Coleoptera: Curculionidae, Scolytinae) in castagneti del Piemonte. Forest@ 15: 112–116. DOI: https://doi.org/10.3832/efor2860-015

Eggler B.D., Groß A., Trautmann M., 1992. Biologisch aktive Pflanzenauszüge; eine natürliche Alternative bei der Behandlung von Schaderregern im Obstbau. 5. Internationaler Erfahrungsaustausch über Forschungsergebnisse zum Ökologischen Obstbau, 19. und 20.11.1992, Hrsg. Fördergemeinschaft Ökologischer Obstbau, Baden-Württemberg, Ministerium für ländlichen Raum, Landwirtschaft und Forsten, 28. https://www.ecofruit.net/wp-content/uploads/2020/05/30_1992_Gros_95.pdf

EU, 2016. Bacillus thuringiensis subsp. kurstaki, Serotype 3a3b, Strain ABTS-351 - Biocide for use as insecticides (PT18). Evaluation of active substances. Competent Authority Report, Document IIIA, eCA: France. https://echa.europa.eu/documents/10162/ 99ca3973-094a-633f-623c-04f89ae1a692 (accesat 17.08.2022)

EFSA (European Food Safety Authority), 2018.Technical report on the outcome of the consultation with Member States and EFSA on the basic substance application for Quassia amara L. wood extract for use in plant protection as insecticide and repellent. EFSA supporting publication 2018:EN-1382. 76 p. DOI: https://doi.org/10.2903/sp.efsa.2018.EN-1382

EFSA (European Food Safety Authority), 2021. Conclusion on the peer review of the pesticide risk assessment of the active substance Bacillus thuringiensis subsp. kurstaki strain ABTS-351. EFSA Journal 2021; 19(10): 6879, 20 p.

DOI: https://doi.org/10.2903/j.efsa.2021.6879

Ferrari R., Burgio G., Maini S., 1993. Comparison between preparation of Bacillus thusringiensis Berliner and insecticides, against Leptinotarsa decemlineata (Say) (Col. Chrysomelidae) in potato field. Bollettino dell'Istituto di Entomologia Guido Grandi della Università degli Studi di Bologna 48: 19-26.

Fogel M.N., Schneider M.I., Desneux N., González B., Ronc A.E., 2013. Impact of the neonicotinoid acetamiprid on immature stages of the predator Eriopis connexa (Coleoptera: Coccinellidae). Ecotoxicology DOI: https://doi.org/10.1007/s10646-013-1094-5

FSC, 2019a. FSC Lists of highly hazardous pesticides. FSC-POL-30-001a V3-0 EN.pdf https://fsc.org/en/media/5447

FSC, 2019b. Approved pesticide derogations and conditions. https://fsc.org/sites/default/ files/2019-10/Approved%20Derogations%20and%20 Conditions_18102019.pdf

Frank S.D., Sadof C.S., 2011. Reducing insecticide volume and nontarget effects of ambrosia beetle management in nurseries. Journal of Economic Entomology 104: 1960–1968. DOI: 10.1603/ec11124

Galko J., Dzurenko M., Ranger C.M., Kulfan J., Kula E., Nikolov C., Zúbrik M., Zach P., 2019. Distribution, habitat preference, and management of the invasive ambrosia beetle Xylosandrus germanus (Coleoptera: Curculionidae, Scolytinae) in European forests with an emphasis on the West Carpathians. Forests 2019, 10, 10. DOI: https://doi.org/10.3390/f10010010

Galvan T.L., Koch R.L., Hutchison W.D., 2005. Effects of spinosad and indoxacarb on survival, development, and reproduction of the multicolored Asian lady beetle (Coleoptera: Coccinellidae). Biological Control 34: 108–114

Ghassemi-Kahrizeh A., Aramideh S., 2014. Sub-lethal effects of Bacillus thuringiensis Berliner on larvae of Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Archives of Phytopathology and Plant Protection 48(3): 259–267. DOI: doi:10.1080/03235408.2014.885408

Glissando, 2020. Bactospeine DF. https://www.glissando.ro/product/bactospeine-df/

Gong Y., Xu B., Zhang Y., Gao X., Wu Q., 2015. Demonstration of an adaptive response to preconditioning Frankliniella occidentalis (Pergande) to sublethal doses of spinosad. Ecotoxicology 24: 1141–1151. DOI 10.1007/s10646-015-1461-5

Graf E., Manser P., 2000. Beitrag zum eingeschleppten Schwarzen Nutzholzborkenkäfer Xylosandrus germa¬nus. Biologie und Schadenpotential an im Wald gelager¬tem Rundholz im Vergleich zu Xyloterus lineatus und Hylecoetus dermestoides. Schweizerische Zeitschrift für Forstwesen 151: 271-281.

Gugliuzzo A., Biedermann P.H.W., Carrillo D., Castrillo L.A., Egonyu J.P., Gallego D., Haddi K., Hulcr J., Jactel H., Kajimura H., Kamata N., Meurisse N., You Li Y., Oliver J.B., Ranger C.M., Rassati D., Stelinski L.L., Sutherland R., GarziaG.T., Wright M.G., Biondi A., 2021. Recent advances toward the sustainable management of invasive Xylosandrus ambrosia beetles. Journal of Pest Science 94: 615–637. DOI: https://doi.org/10.1007/s10340-021-01382-3

Gupta S., Gajbhiye V.T., Gupta R.K., 2008. Effect of light on the degradation of two neonicotinoids viz acetamiprid and thiacloprid in soil. Bulletin of Environmental Contamination and Toxicology 81:185–189. DOI: 10.1007/s00128-008-9405-x

Habiba U., Islam W., Parween S., 2019. Contact and gustatory effects of spinosad on the survivability of Sitophilus oryzae L. (Coleoptera: Curculionidae) in wheat. Bangladesh Journal of Zoology 47(1): 253-262. DOI: https://doi.org/10.3329/bjz.v47i2.44336

Habiba U., Islam W., Parween S., 2020. Influence of spinosad on the reproductive potential of Tribolium castaneum (Herbst), (Coleoptera: Tenebrionidae) infesting wheat. ENTOMON 44(4): 249–258. DOI: https://doi.org/10.33307/entomon.v44i4.476

Hauptman T., Pavlin R., Grošelj P., Jurc M., 2019. Distribution and abundance of the alien Xylosandrus germanus and other ambrosia beetles (Coleoptera: Curculionidae, Scolytinae) in different forest stands in central Slovenia. iForest 12: 451-458. DOI: https://doi.org/10.3832/ifor3114-012

Heidenreich E., 1964. Ökologische Bedingungen für Primärbefall durch Xylosandrus germanus. Zeitschrift für Angewandte Entomologie 54: 131-140. DOI: https://doi.org/10.1111/j.1439-0418.1964.tb02925.x

Höfte H., Whiteley H.R., 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiological Reviews 53(2): 242–255. DOI: 10.1128/mr.53.2.242-255.1989

Holaschke M., Hua L., Basedow T., Kliche-Spory C., 2006. Untersuchungen zur Wirkung eines standardisierten Extraktes aus dem Holz von Quassia amara L. ex Blom auf Getreideblattläuse und deren Antagonisten. Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie 15: 269-272.

Knox G.W., Klingeman W.E., Paret M., Fulcher A., 2012. Management of pests, plant diseases and abiotic disorders of Magnolia species in the Southeastern United States: a review. Journal of Environmental Horticulture 30(4): 223–234. DOI: https://doi.org/10.24266/0738-2898.30.4.223

Kowalska J., 2010. Spinosad effectively controls Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) in organic potato. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 60(3) 283-286. DOI: https://doi.org/10.1080/09064710902934205

Krieg A., Huger A.M., Langenbruch G.A., Schnetter W., 1983. Bacillus thuringiensis var. tenebrionis: ein neuer, gegenüber Larven von Coleopteren wirksamer Pathotyp. Zeitschrift für Angewandte Entomologie 96: 500-508. DOI: https://doi.org/10.1111/j.1439-0418.1983.tb03704.x

Lambert B., Theunis W., Aguda R., Van Audenhove K., Decock C., Jansens S., Seurinck J., Peferoen M., 1992. Nucleotide sequence of gene cryIIID encoding a novel coleopteran-active crystal protein from strain BTI109P of Bacillus thuringiensis subsp. kurstaki. Gene 110:131-132. DOI: 10.1016/0378-1119(92)90457-z

Leach H., Wise J.C., Isaacs R., 2017. Reduced ultraviolet light transmission increases insecticide longevity in protected culture raspberry production. Chemosphere 189: 454-465. DOI: https://doi.org/10.1016/j.chemosphere.2017.09.086

Maksymov J. K., 1987. Erstmaliger Massenbefall des schwarzen Nutzholzborkenkäfer Xylosandrus germa¬nus Blandf., in der Schweiz. Schweizerische Zeitschrift für Forstwesen 138(3): 215-227.

Mancebo F., Hilje L., Mora G., Salazar R., 2000. Antifeedant activity of Quassia amara (Simaroubaceae) extracts on Hypsipyla grandella (Lepidoptera: Pyralidae) larvae. Crop Protection 19: 301-305. DOI: https://doi.org/10.1016/S0261-2194(00)00021-1

Mandour N.S., 2009. Influence of spinosad on immature and adult stages of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). BioControl 54:93–102. DOI: https://doi.org/10.1007/s10526-008-9161-1

Mansoor M.M., Afzal M., Raza A.B.M., Akram Z., Waqar A., Afzal M.B.S., 2015. Post-exposure temperature influence on the toxicity of conventional and new chemistry insecticides to green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Saudi Journal of Biological Sciences 22(3): 317–321. DOI: https://doi.org/10.1016/j.sjbs.2014.10.008

Mayers C.G., McNew D.L., Harrington T.C., Roeper R.A., Fraedrich S.W., Biedermann P.H., Castrillo L.A., Reed S.E., 2015. Three genera in the Ceratocystidaceae are the respective symbionts of three independent lineages of ambrosia beetles with large, complex mycangia. Fungal Biology 119: 1075–1092. DOI: 10.1016/j.funbio.2015.08.002

McIndoo N.E., Sievers, A.F., 1917. Quassia extract as a contact insecticide. Journal of Agricultural Research 10(10): 497-531.

Méndez-López I., Basurto-Ríos R., Ibarra J.E., 2003. Bacillus thuringiensis serovar israelensis is highly toxic to the coffee berry borer, Hypothenemus hampei Ferr. (Coleoptera: Scolytidae). FEMS Microbiology Letters 226: 73-77. DOI: https://doi.org/10.1016/S0378-1097(03)00557-3

Mura M.E., Ruiu L., 2018. Sex-specific sub-lethal effects and immune response in Ceratitis capitata Wied. (Diptera: Tephritidae) challenged with spinosad. Insects 2018, 9, 73; DOI: 10.3390/insects9030073

Naher T.T., Islam W., 2019. Contact action of spinosad on Callosobruchus chinensis (L.) in three successive generations. International Journal of Science and Research 8(6): 1873-1878. Paper ID: ART20198141

Olenici N., Knížek M., Olenici V., Duduman M.-L., Biriş I.-A., 2014a. First report of three scolytid species (Coleoptera: Curculionidae, Scolytinae) in Romania. Annals of Forest Research 57: 87–95. DOI: https://doi.org/10.15287/afr.2014.196.

Olenici N., Duduman M.-L., Tomescu R., 2015. Xylosandrus germanus (Coleoptera, Curculionidae, Scolytinae) – un potenţial dăunător al pădurilor, livezilor şi viilor din România. Bucovina Forestieră 15: 207–216.

Olenici N., Bouriaud O., Manea I.A., 2018. Efficient conifer seedling protection against pine weevil damage using neonicotinoids. Baltic Forestry 24(2): 201-209.

Olenici N., Duduman M.-L., Popa I., Isaia G., Paraschiv M., 2022. Geographical distribution of three forest invasive beetle species in Romania. Insects 2022, 13, 621. DOI: https://doi.org/10.3390/insects13070621

Olenici N., Manea A.I., Olenici V., Tomescu R., 2014b. Efficacy of conifer seedling protection against pine weevil damage using neonicotinoids and metaflumizone insecticides. Bulletin of the Transilvania University of Braşov Series II: Forestry 7(56): 29-36.

Peña J.E., Crane J.H., Capinera J.L., Duncan R.E., Kendra P.E., Ploetz R.C., McLean S., Brar G., Thomas M.C., Cave R.D., 2011. Chemical control of the redbay ambrosia beetle, Xyleborus glabratus, and other Scolytinae (Coleoptera: Curculionidae). Florida Entomologist 94(4): 882-896. DOI: https://doi.org/10.1653/024.094.0424

Piechowicz B., Grodzicki P., 2013. Effect of temperature on toxicity of selected insecticides to forest beetle Anoplotrupes stercorosus. Chemistry-Didactics-Ecology-Metrology 18(1-2): 103-108. DOI: https://doi.org/10.2478/cdem-2013-0023

Piri F., Sahragard A., Ghadamyari M., 2014. Sublethal effects of spinosad on some biochemical and biological parameters of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). Plant Protectection Science 50: 135–144. DOI: https://doi.org/10.17221/50/2013-PPS

Postner M., 1974. Scolytidae (= Ipidae), Borkenkäfer. In Schwenke, W. (Ed.): Die Forstschädlinge Europas. 2. Band – Käfer. Paul Parey, Berlin/Hamburg, pp. 334-482.

Psota V., Ouředníčková J., Falta V., 2010. Control of Hoplo¬campa testudinea using the extract from Quassia amara in organic apple growing. Horticultural Science (Prague) 34: 139–144. DOI: https://doi.org/10.17221/76/2009-HORTSCI

Ranger C.M., Reding M.E., Schultz P.B., Oliver J.B., 2013. Influence of flood-stress on ambrosia beetle host-selection and implications for their management in a changing climate. Agricultural and Forest Entomology 15: 56–64. DOI: https://doi.org/10.1111/j.1461-9563.2012. 00591.x.

Ranger C.M., Reding M.E., Schultz P.B., Oliver J.B., Frank S.D., Addesso K.M., Chong J.H., Sampson B., Werle C., Gill S., Krause C., 2016. Biology, ecology and management of nonnative ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in ornamental plant nurseries. Journal of Integrated Pest Management (2016) 7(1): 9; DOI: https://doi.org/10.1093/jipm/pmw005

Ranger C.M., Schultz P.B., Frank S.D., Reding M.E., 2019 Freeze stress of deciduous trees induces attacks by opportunistic ambrosia beetles. Agricultural and Forest Entomology 21: 168–179. DOI: https://doi.org/10.1111/afe.12317

Reding M.E., Ranger C.M., 2018. Residue age and attack pressure infuence eficacy of insecticide treatments against ambrosia beetles (Coleoptera: Curculionidae). Journal of Economic Entomology 111: 269–276. DOI: 10.1093/jee/tox327

Ruzzier E., Prazaru S.C., Faccoli M., Duso C., 2021. Xylosandrus germanus (Blandford, 1894) on grapevines in Italy with a compilation of world Scolytine weevils developing on Vitaceae. Insects 2021, 12, 869. https://doi.org/10.3390/insects12100869

Saeed S., Masood A., Sayyed A.H., Kwon Y.J., 2011. Comparative efficacy of different pesticides against mango bark beetle Hypocryphalus mangiferae Stebbing (Coleoptera: Scolytidae). Entomological Research 41: 142–150. https://doi.org/10.1111/j.1748-5967.2011.00329.x

Sial M.U., Zhao Z., Zhang L., Zhang Y., Mao L., Jiang H., 2018. Evaluation of Insecticides induced hormesis on the demographic parameters of Myzus persicae and expression changes of metabolic resistance detoxifcation genes. Scientific Reports 8, 16601 (2018). DOI: https://doi.org/10.1038/s41598-018-35076-1

Solomon J.D., 1995. Guide to insect borers of North Amer¬ican broadleaf trees and shrubs. Agriculture Handbook AH-706. Washington, DC: U.S. Department of Agricul¬ture, Forest Service, 735 p.

Sparks T.C., Thompson G.D., Kirst H.A., Hertlein M.B., Mynderse J.S., Turner J.R., Worden T.V., 1999. Fermentation derived insect control agents. In: Hall F.R., Menn J.J. (eds.), Biopesticides: use and delivery. Humana Press, Totowa, pp. 171-188.

Şengonca Ç., Brüggen K.-U., 1991. Untersuchungen über die Wirkung wäßriger Extrakte aus Quassia amara (L.) auf Getreideblattläuse. Journal of Applied Entomology 112: 211-215. DOI: https://doi.org/10.1111/j.1439-0418.1991.tb01049.x

Tudoran A., Nordlander G., Karlberg A., Puentes A., 2021. A major forest insect pest, the pine weevil Hylobius abietis, is more susceptible to Diptera- than Coleoptera-targeted Bacillus thuringiensis strains. Pest Management Science 77: 1303–1315. DOI: 10.1002/ps.6144

van Frankenhuyzen K., 2017. Specificity and cross-order activity of Bacillus thuringiensis pesticidal proteins. In: Fiuza L.M., Polanczyk R.A., Crickmore N. (eds.), Bacillus thuringiensis and Lysinibacillus sphaericus - Characterization and use in the field of biocontrol. Springer, pp. 127-172.

Vélez M., Botina L.L., Turchen L.M., Barbosa W.F., Guedes R.N.C., 2018. Spinosad- and deltamethrin-induced impact on mating and reproductive output of the maize weevil Sitophilus zeamais. Journal of Economic Entomology, 111(2): 950–958. DOI: https://doi.org/10.1093/jee/tox381

Wang, W.; Huang, Q.; Liu, X.; Liang, G. Differences in the sublethal effects of sulfoxaflor and acetamiprid on the Aphis gossypii Glover (Homoptera: Aphididae) are related to its basic sensitivity level. Insects 2022, 13(6), 498. DOI: https://doi.org/10.3390/insects13060498

Weihrauch F., Eckert M., Bernhard E., 2007. An ancient compound rediscovered: perspectives of aphid control in organic hop growing by the use of quassia products. In: Proceedings of the Scientific Commission of the International Hop Growers´ Convention, Scientific Commission, I.H.G.C., Hop Research Center Hüll, D-Wolnzach, pp. 105-108. https://orgprints.org/id/eprint/15348/ (accesat 16.08.2022)

Weber B., McPherson J., 1983. World list of host plants of Xylosandrus germanus (Blandford) (Coleoptera: Scolytidae). The Coleopterists Bulletin 37: 114–134.

Yamada T., Takahashi H., Hatano R., 1999. A novel insecticide, Acetamiprid. In: Yamamoto I., Casida J.E. (eds.), Nicotinoid Insecticides and the Nicotinic Acetylcholine Receptor. Springer, Tokyo, pp. 149-176.

Yousefnezhad-Irani R., Ali Asghar P., 2007. Effect of Spinosad on adults of Tribolium castaneum (Col: Tenebrionidae) and Sitophilus oryzae (Col: Curculionidae). Pakistan Journal of Biological Sciences 10: 2505-2509. DOI: 10.3923/pjbs.2007.2505.2509

Yu Q., Qin S., Wang X., Qiao X., 2006. Dissipation of acetamiprid and imidacloprid under different temperature, light and biological factors on phyllosphere of Brassica chinensis. Chinese Journal of Pesticide Science 8(2): 147-151.

Zach P., Topp W., Kulfan J., Simon M. 2001. Coloniza¬tion of two alien ambrosia beetles (Coleoptera, Scolyti¬dae) on debarked spruce logs. Biologia (Bratislava) 56: 175–181.

Zar J.H., 2010. Biostatistical analysis. 5th ed. Prentince Hall, Upper Saddle River, NJ, 944 p.

Zhang A., Xu L., Liu Z., Zhang J., Zhao K., Han L., 2022. Effects of acetamiprid at low and median lethal concentrations on the development and reproduction of the soybean aphid Aphis glycines. Insects 2022, 13, 87. DOI: https://doi.org/10.3390/insects13010087

Descărcări

Publicat

2022-10-19

Cum cităm

Olenici, N. (2022). Eficacitatea unor pesticide în prevenirea atacului de Xylosandrus germanus (Coleoptera: Curculionidae, Scolytinae), în condiții de laborator. Bucovina Forestieră, 22(2), 97-115. https://doi.org/10.4316/bf.2022.015

Număr

Secțiune

Articole de cercetare

Cele mai citite articole ale aceluiași autor(i)

1 2 > >>