Rolul patogenilor plantelor în pădurile seculare
DOI:
https://doi.org/10.4316/bf.2022.005Cuvinte cheie:
păduri seculare, fitopatogeni, biodiversitate, perturbări biotice, ecologia bolilor, rețele de interacțiune a speciilorRezumat
Pădurile seculare sunt considerate structuri de referință ale naturalității și modele în comparațiile cu pădurile gospodărite, comparații care au dus la dezbateri în privința biodiversității, structurii și dinamicii ce au polarizat specialiștii în conservare și practicienii silvici. Patogenii plantelor sunt de regulă ignorați ca și componente ale biodiversității, percepția comună asupra lor fiind legată de rolul lor de factori de stres biotic. Totuși, patogenii care stabilesc câteva grupări funcționale (patogeni biotrofi sau necrotrofi, patogeni endofitici, specii sapro-parazite, în special ale lemnului) în păduri cu grad înalt de naturalitate așa cum sunt pădurile seculare stabilesc rețele de interacțiune cu alte câteva grupe funcționale de organisme ca hiperparaziții, consumatorii, specii care favorizează patogenii, specii indirect oportuniste (așa cum sunt speciile care trăiesc în scorburi), specii saprotrofe precum și specii mutualiste. Fiind în legătură cu arborii bătrâni (o categorie rară sau inexistentă în pădurile gosăpodărite) sau specii periclitate de plante din păduri, fitopatogenii devin astfel indicatori de biodiversitate și naturalitate. Gradientul care merge de la specii saprotrofe, la sapro-patogeni și specii generaliște/specializate de patogeni ce caracterizează ecosistemele forestiere este în mare parte în legătură cu lemnul și scoarța arborilor, fiind conectat la circuitul nutrienților care este un proces de nivel ecosistemic. Atâta vreme cât procesul patogen este menținut la nivelul mortalității de bază a arborilor, patogenii joacă rolul unor factori de control care contribuie direct și indirect la biodiversitatea pădurilor. Progresele actuale în ecologia bolilor, în studiile integrative asupra biodiversității și apariția unui cadru holistic ce modelează ecologia modernă aduc în prim plan patogenii endemici sau rari ca fiind factori de control ai populațiilor de plante, ca și componente ale nișei fenotipice a acestora precum și a biodiversității globale, ca și furnizori potențiali de servicii ecologice (surse de medicamente) și componente ale rețelelor ecologice complexe. Cu toate acestea, comparațiile dintre pădurile seculare și cele gospodărite ar trebui focalizate pe echitabilitatea speciile de patogeni (care este ridicată în pădurile seculare și scăzută în cele gospodărite) și nu în mod special pe bogăția de specii. Cu toate acestea, există fitopatogeni responsabili de perturbări majore biotice în pădurile din întreaga lume cum sunt patogenii invazivi, alohtoni sau emergenți amenințând astfel atât pădurile seculare cât și pădurile gospodărite.
Descărcări
Vizualizări
Referințe
Abrego N., Norberg A., Ovaskainen O., 2017. Measuring and predicting the influence of traits on the assembly processes of woodinhabiting fungi. Journal of Ecology 105(4):1070-1081. https://doi.org/10.1111/1365- 2745.12722
Alem D., Dejene T., Geml J., Oria-De-Rueda J. A., Martín-Pinto P. 2022. Metabarcoding analysis of the soil fungal community to aid the conservation of underexplored church forests in Ethiopia. Scientific Reports, 12, 4817. https://doi.org/10.1038/s41598-022-08828-3.
Alexander H.M., Mihail J. D., 2000. Seedling disease in an annual legume: Consequences for seedling mortality, plant size, and population seed production. Oecologia 122: 346-353. https://doi.org/10.1007/s004420050040.
Antonelli A., Fry C., Smith R.J., Simmonds M.S.J., Kersey P.J., Pritchard H.W., Abbo M.S., Acedo C., Adams J., Ainsworth A.M., Allkin B., Annecke W., Bachman S.P., Bacon K., Bárrios S., Barstow C., Battison A., Bell E., Bensusan K., Bidartondo M.I., Blackhall-Miles R.J., Borrell J.S., Brearley F.Q., Breman E., Brewer R.F.A., Brodie J., Cámara-Leret R., Campostrini Forzza R., Cannon P., Carine M., Carretero J., Cavagnaro T.R., Cazar M.-E., Chapman T., Cheek M., Clubbe C., Cockel C., Collemare J., Cooper A., Copeland A.I., Corcoran M., Couch C., Cowell C., Crous P., da Silva M., Dalle G., Das D., David J.C., Davies L., Davies N., De Canha M.N., de Lirio E.J., Demissew S., Diazgranados M., Dickie J., Dines T., Douglas B., Dröge G., Dulloo M.E., Fang R., Farlow A., Farrar K., Fay M.F., Felix J., Forest F., Forrest L.L., Fulcher T., Gafforov Y., Gardiner L.M., Gâteblé G., Gaya E., Geslin B., Gonçalves S.C., Gore C.J.N., Govaerts R., Gowda B., Grace O.M., Grall A., Haelewaters D., Halley J.M., Hamilton M.A., Hazra A., Heller T., Hollingsworth P.M., Holstein N., Howes M.-J.R., Hughes M., Hunter D., Hutchinson N., Hyde K., Iganci J., Jones M., Kelly L.J., Kirk P., Koch H., Krisai-Greilhuber I., Lall N., Langat M.K., Leaman, D.J., Leão T.C., Lee M.A., Leitch I.J., Leon C., Lettice E., Lewis G.P., Li, L., Lindon H., Liu J.S., Liu U., Llewellyn T., Looney B., Lovett J.C., Łuczaj Ł., Lulekal E., Maggassouba S., Malécot V., Martin C., Masera O.R., Mattana E., Maxted N., Mba C., McGinn K.J., Metheringham C., Miles S., Miller J., Milliken W., Moat J., Moore P.G.P., Morim M.P., Mueller G.M., Muminjanov H., Negrão R., Nic Lughadha E., Nicolson N., Niskanen T., Nono Womdim R., Noorani A., Obreza M., O’Donnell K., O’Hanlon R., Onana J.-M., Ondo I., Padulosi S., Paton A., Pearce T., Pérez Escobar O.A., Pieroni A., Pironon S., Prescott T.A.K., Qi Y.D., Qin H., Quave C.L., Rajaovelona L., Razanajatovo H., Reich P.B., Rianawati E., Rich T.C.G., Richards S.L., Rivers M.C., Ross A., Rumsey F., Ryan M., Ryan P., Sagala S., Sanchez M.D., Sharrock S., Shrestha K.K., Sim J., Sirakaya A., Sjöman H., Smidt E.C., Smith D., Smith P., Smith S.R., Sofo A., Spence N., Stanworth A., Stara K., Stevenson P.C., Stroh P., Suz L.M., Tambam B.B., Tatsis E.C., Taylor I., Thiers B., Thormann I., Trivedi C., Twilley D., Twyford A.D., Ulian T., Utteridge T., Vaglica V., Vásquez-Londoño C., Victor J., Viruel J., Walker B.E., Walker K., Walsh A., Way M., Wilbraham J., Wilkin P., Wilkinson T., Williams C., Winterton D., Wong K.M., Woodfield-Pascoe N., Woodman J., Wyatt L., Wynberg R., Zhang B.G. 2020. State of the World’s Plants and Fungi 2020. Royal Botanic Gardens, Kew. https://doi.org/10.34885/172.
Asbeck T., Grossmann J., Paillet Y., Winiger N., Bauhus J., 2021. The use of tree-related microhabitats as forest biodiversity indicators and to guide integrated forest management. Current Forestry Reports 7: 59-68. https://doi.org/10.1007/s40725-020-00132-5.
Ascensão F., Capinha C., 2017. Aliens on the move: Transportation networks and non-native species. In Railway Ecology; Borda-de Água, L., Barrientos, R., Beja, P., Pereira, H.M., Eds.; Springer: Cham, Switzerland, pp. 293–297, ISBN 978-3-319-57496-7.
Atrena A., Benelyte G.G., Læssøe T., Riis-Hansen R., Bruun H.H., Rahbek C., Hielmann-Clausen J., 2020. Quality of the substrate and forets structure determine macrofungal richness along a gradient of management intensity in beech forests. Forest Ecology and management 478(15): 11.8512 https://doi.org/10.1016/j.foreco.2020.118512.
Bacigálová K., 1997. Species of Taphrina on Betula in Slovakia. - Czech Mycol. 50: 107-118. https://doi.org/10.33585/cmy.50204.
Barabási A-L., 2016. Network Science.Cambridge University Press.pg. 456.
Barredo C., Cano, J.I., Brailescu, C., Teller, A., Sabatini, F.M., Mauri, A., Janouskova, K., 2021. Mapping and assessment of primary and old-growth forests in Europe, Amt fur Veroffentlichungen der EU, Luxemburg.
Bascompte J., 2019. Mutualism and biodiversity. Curr. Biol. 29, R467–R470. doi: 10.1016/j.cub.2019.03.062.
Batagelj V. Mrvar A., 2010-2021. Pajek: program for analysis and visualization of large networks. Department of Mathematics, University of Ljubliana.
Bauhus, J. Puettmann, K. Messier C., 2009. Silviculture for old-growth attributes. Forest Ecology and Management 258: 525-537. - doi: 10.101 6/j.foreco.2009.01.053.
Bermúdez-Cova M.A., Cruz-Laufer A.J., Piepenbring M., 2022. Hyperparasitic Fungi on Black Mildews (Meliolales, Ascomycota): Hidden Fungal Diversity in the Tropics. Front. Fungal Biol. 3:885279. doi: 10.3389/ffunb.2022.885279.
Biriş I.A., 2017. Status of Romania’s Primary Forests. URL: https://wilderness-society.org/wpcontent/ uploads/2017/11/The-Status-of-Romanias-Primary-Forests.
Biriş I.A.,Veen, P. (Eds.), 2005. Virgin forests in Romania – Inventory and strategy for sustainable management and protection of virgin forests in Romania (PIN-MATRA / 2001 / 018).
Blackwell M., Vega F.E., 2018. Lives within lives: Hidden fungal biodiversity and the importance of conservation. Fungal Ecology 35:127-134. https://doi.org/10.1016/j.funeco.2018.05.011.
Blada I., 1990. Blister rust in Romania. European Journal of Forest Pathology, 20(1): 55-58. https://doi.org/10.1111/j.1439-0329.1990.tb01273.x.
Bontea V., 1985. Ciuperci parazite și saprofite din România. Editura Academiei Române. București, vol. I.
Borgatti S.P., Mehra A., Brass D.J., Labianca G., 2009. Network science in the social sciences. Science 323: 892-895. https://doi.org/10.1126/science.1165821.
Bottero A., Garbarino M., Dukic´ V., Govedar Z., Lingua E., Nagel T.A., Motta R., 2011. Gap phase dynamics in the old-growth forest of Lom, Bosnia and Herzegovina. Silva Fennica 45(5): 875–887. https://doi.org/10.14214/sf.76.
Burdon J.J., Thrall P.H., Ericson L., 2006. The current and future dynamics of disease in plant communities. Annu. Rev. Phytopathol. 44:19-39. https://doi.org/10.1146/annurev.phyto.43.040204.140238.
Burrascano S., Lombardi P., Marchetti M., 2008. Old-growth forests structure and dead-wood: Are they indicators of plant species composition? A case study from central Italy. Plant Bioscience 143(2): 313-323. https://doi.org/10.1080/11263500802150613.
Bussotti F., Feducci M., Jacopetti G., Maggino F., Pollastrini M., 2018. Linking forest diversity and tree-health: preliminary insights from a large-scale survey in Italy. Forest Ecosystems 5:12 DOI 10.1186/s40663-018-0130-6
Callicott J.B., Crowder L.B., Mumford K., 1999. Current normative concepts in conservation. Conservation Biology 13: 22–35. https://doi.org/10.1046/j.1523-1739.1999.97333.x.
Cherubini P., Battipaglia G., Innes J.L., 2021.Tree vitality and forest health: can tree-ring stable isotopes be used as indicators? Current Forestry Reports 7:69–80. https://doi.org/10.1007/s40725-021-00137-8.
Costanza R., Norton B., Haskell. B., 1992. Ecosystem Health: New Goals for Environmental Management. Washington, DC: Island Press. 292 pg.
Dahlberg A., 2019. Hapalopilus croceus. The IUCN Red List of Threatened Species 2019: e.T58521209A58521216. https://dx.doi.org/10.2305/IUCN.UK.2019-2.RLTS.T58521209A58521216.en.
Dean C., Kirkpatrick J. B., Doyle R. B., Osborn J., Fitzgerald N. B., Roxburgh S. H. 2020. The overlooked soil carbon under large old trees. Geoderma. https://doi.org/10. 1016/j.geoderma.2020.114541.
Desprez-Lousteau M.L., Robin C., Reynaud G., Déqué M., Badeau V., Piou D., Husson C., Marçais B., 2007. Simulating the effects of a climate-change scenario on the geographical range and activity of forest pathogenic fungi. Can. J. Plant pathol. 29:101-120. https://doi.org/10.1080/07060660709507447.
Diaci J., Rozenbergar D., Boncina A., 2010. Stand dynamics of Dinaric old‐growth forest in Slovenia: Are indirect human influences relevant? Plant Biosystems: 144:1, 194-201, https://doi.org/10.1080/11263500903560785.
Dvorak D., Vasutova M., Hofmeister J., Beran M., Hosek J., Betak J., Burel J., Deckerova H., 2017. Macrofungal diversity patterns in central European forests affirm the key importance of old-growth forests. Fungal Ecology, 27: 145-154. https://doi.org/10.1016/j.funeco.2016.12.003
EPPO, 2021. EPPO Global database. In: EPPO Global database, Paris, France: EPPO. https://gd.eppo.int/
Fantini S., Fois M., Casula P., Fenu G., Calvia G., Bacchetta, G., 2020. Structural heterogeneity and old-growthness: A first regional-scale assessment of Sardinian forests. Ann. For. Res. 63(2): 103-120. https://doi.org/10.15287/afr.2020.1968.
Fitter A.H., Garbaye J., 1994. Interactions between mycorrhizal fungi and other soil organisms. Plant and Soil 159: 123-132. https://doi.org/10.1007/BF00000101.
Floudas D., Binder M., Riley R., Barry K., Blanchette R. A., Henrissat B., Martínez A. T., Otillar R., Spatafora J. W., Yadav J. S., Aerts A., Benoit I., Boyd A., Carlson A., Copeland A., Coutinho P. M., De Vries R. P., Ferreira P., Findley K., Foster B., Gaskell J., Glotzer D., Górecki P., Heitman J., Hesse C., Hori C., Igarashi K., Jurgens J. A., Kallen N., Kersten P., Kohler A., Kües U., Kumar T. K. A., Kuo A., Labutti K., Larrondo L. F., Lindquist E., Ling A., Lombard V., Lucas S., Lundell T., Martin R., Mclaughlin D. J., Morgenstern I., Morin E., Murat C., Nagy L. G., Nolan M., Ohm R. A., Patyshakuliyeva A., Rokas A., Ruiz-Dueñas F. J., Sabat G., Salamov A., Samejima M., Schmutz J., Slot J. C., St. John F., Stenlid J., Sun H., Sun S., Syed K., Tsang A., Wiebenga A., Young D., Pisabarro A., Eastwood D. C., Martin F., Cullen D., Grigoriev I. V., Hibbett D. S. 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719. https://doi.org/10.1126/science.1221748.
Freeman L.C., 1979. Centrality in Social Networks Conceptual Clarification. Soc. Networks 1, 215–239. https://doi.org/10.1016/0378-8733(78)90021-7.
Freilich M.A., Wieters, E., Broitman, B.R., Marquet, P.A., Navarrete, S.A., 2018. Species co-occurrence networks: can they reveal trophic and non-trophic interactions in ecological communities? Ecology 99, 690–699. https://doi.org/10.1002/ecy.2142
Frey S.J.K., Hadley A.S., Johnson S.L., Schulze M., Jones J. A., Betts M. G. 2016. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci Adv. https://doi.org/10.1126/sciadv.1501392.
Gilbert G.S., Hubbell S.P. 1996. Plant diseases and the conservation of tropical forests. 46(2): 98-106. https://doi.org/10.2307/1312812.
Gilhen-Baker M., Roviello G., Beresford-Kroeger D., Roviello V., 2022. Old growth forests and large old trees as critical organisms connecting ecosystems and human health. A review. Environmental Chemistry Letters. 20. https://doi.org/10.1007/s10311-021-01372-y.
Giraud T., Refregier G., Le Gac M., de Vienne M., Hood M.E., 2008. Speciation in fungi. Fungal Genetics and Biology 45: 791–802. https://doi.org/10.1016/j.fgb.2008.02.001
Gleason F.H., Lilje O., Marano A.V., Sime-Ngando T., Sullivan B.K., Kirchmair M., Neuhauser S., 2014. Ecological functions of zoosporic hyperparasites. Front. Microbiol. 5: 244. https://doi.org/10.3389/fmicb.2014.00244
Goberna M., Verdú M. 2022. Cautionary notes on the use of co-occurrence networks in soil ecology. Soil Biology and Biochemistry 166:108534.https://doi.org/10.1016/j.soilbio.2021.108534
Gonthier P., Gennaro M., Nicolotti G., 2006. Effects of water stress on the endophytic mycota of Quercus robur. Fungal Divers. 21: 69-80.
Gross A., Holdenrieder O., Pautasso M., Queloz V., Sieber T.N., 2014. Hymenoscyphus pseudoalbidus, the causal agent of European ashdieback. Mol. Plant Pathol., 15: 5-21. https://doi.org/10.1111/mpp.12073
Gross J., 2016. Chemical Communication between Phytopathogens, Their Host Plants and Vector Insects and Eavesdropping by Natural Enemies. Front. Ecol. Evol. 4: 104. https://doi.org/10.3389/fevo.2016.00104
Grudnicki M., Tănase C., 2003. Aspecte fitopatologice privind ciupercile de pe rășinoase din unele arborete ale județului Suceava, Analele Universității ,,Ștefan Cel Mare" Suceava Secțiunea Silvicultură Serie nouă - nr. 2/2003: 95-102.
Hagen M., Kissling W.D., Rasmussen C., De Aguiar M.A.M., Brown L.E.,Carstensen D.W., Alves-Dos-Santos I., Dupont Y.L., Edwards F.K., Genini J.,Guimarães P.R., Jenkins G.B., Jordano P., Kaiser-Bunbury C.N., Ledger M.E.,Maia K.P., Darcie Marquitti F.M., Mclaughlin Ó., Morellato L.P.C., O'Gorman E.J.,Trøjelsgaard K., Tylianakis J.M., Morais Vidal M., Woodward G., Olesen J.M., 2012. Biodiversity, species interactions and ecological networks in a fragmented world. Adv. Ecol. Res. 46, 89-210. https://doi.org/10.1016/B978-0-12-396992-7.00002-2
Hansen E., 1997. Needle and broom rusts. In: Compendium of conifer diseases [ed. by Hansen EM, Lewis KJ] Minnesota, USA: American Phytopathological Society Press, 51-53.
Hanski I., 1999. Metapopulation Ecology. Oxford, University Press, Oxford.
Hanski I., 2000. Extinction debt and species credit in boreal forests: modelling the consequences of different approaches to biodiversity conservation. Annales Zoologici Fennici, 37: 271-280.
Harper J.L., 1980. Plant demography and ecological theory. Oikos 35, 244-253. https://doi.org/10.2307/3544432
Haskell B., Norton B.G., Constanza R., 1992. What is ecosystem health and why should we worry about it? In Ecosystem health, R. Costanza, B.G. Norton, and BD. Haskell, eds. p. 3-20. Island Press, Washington, DC.
Helfer S., 1993. Rust fungi - a conservationist's dilemma. In: Pegler DN, Boddy L, Ing B, Kirk PM, eds. Fungi of Europe: investigation, recording and conservation. Richmond, UK: Royal Botanic Gardens, Kew 287-294.
Holdenrieder O., Pautasso M., Weisberg P.J., Lonsdale D., 2004 Tree diseases and landscape processes: the challenge of landscape pathology. Trends Ecol. Evol. 19: 446- 452. https://doi.org/10.1016/j.tree.2004.06.003
Hosaka K., Uno K., 2012. A preliminary survey on larval diversity in mushroom fruitbodies. Bull. Natl. Mus. Nat. Sci, Ser. B 391(3): 77-85.
Hunter P., 2009. Extended phenotype redux. How far can the reach of genes extend in manipulating 699 the environment of an organism? EMBO Rep. 10, 212-215.https://doi.org/10.1038/embor.2009.18
Huth L., Ash G. J., Idnurm A., Kiss L., Vaghefi N., 2021. The "Bipartite" structure of the first genome of Ampelomyces quisqualis, a common hyperparasite and biocontrol agent of powdery mildews, may point to its evolutionary origin from plant pathogenic fungi. Genome Biol. Evol. 13, 1-7. https://doi.org/10.1093/gbe/evab182
Inkpen A., 2019. Health, ecology and the microbiome. eLife;8:e47626. DOI: https://doi.org/10.7554/eLife.47626
Inoue T., Okane I., Ishiga Y., Degawa Y., Hosoya T., Yamaoka Y., 2019. The life cycle of Hymenoscyphus fraxineus on Manchurian ash,Fraxinus mandshurica, in Japan. Mycoscience, 60, 89-94. https://doi.org/10.1016/j.myc.2018.12.003
Jacobsen R.M., Kauserud H., Sverdrup-Thyggeson A., Markussen Bjorbækmo M., Birkemoe T., 2017. Wood-inhabiting insects can function as targeted vectors for decomposing fungi. Fungal Ecology 29: 76-84. https://doi.org/10.1016/j.funeco.2017.06.006
Jamieson D., 1995. Ecosystem health: Some preventative medicine. Environmental Values 4: 333-344. https://doi.org/10.3197/096327195776679411
Janzen D.H., 1980. When is it coevolution? Evolution 34, 611-612. https://doi.org/10.1111/j.1558-5646.1980.tb04849.x
Jimu L., Kemler M., Mujuru L., Mwenje E., 2018. Illumina DNA metabarcoding of Eucalyptus plantation soil reveals the presence of mycorrhizal and pathogenic fungi, Forestry: An International Journal of Forest Research, 91 (2): 238-245. https://doi.org/10.1093/forestry/cpx046
Jonsson M., Nordlander G., 2006. Insect colonisation of fruiting bodies of the wood-decaying fungus Fomitopsis pinicola at different distances from an old-growth forest. Biodivers. Conserv. 15:295-309. https://doi.org/10.1007/s10531-005-1536-3
Kameniar O., Vostarek O., Mikoláš M., Svitok M., Frankovič M., Morrissey R.C., Kozák D., Nagel T.A., Dušátko M., Pavlin J., Ferenčík M., Keeton W.S., Spînu A. P., Petritan I.C., Majdanová L., Markuljaková K., Roibu C.-C., Gloor R., Bače R., Buechling A., Synek M., Rydval M., Málek J., Begović K., Hofmeister J., Rodrigo R., Pettit J.L., Fodor E., Čada V., Janda P., Svoboda M., 2022. Synchronized Disturbances in Spruce- and Beech-Dominated Forests Across the Largest Primary Mountain Forest Landscape in Temperate Europe. Available at SSRN: https://ssrn.com/abstract=4139034 or https://doi.org/10.2139/ssrn.4139034
Kirk P.M., Cannon, P.F., Minter, D.W., Stalpers, J.A., 2008. Dictionary of the Fungi. 10th edition.
Kiss L., 2001. The role of hyperparasites in host-plant parasitic fungi relationship.Ch. 12. In Jeger, M.J., Spence, N.J. Biotic interactions in plant-pathogen associations. CAB International, pp: 227-236. https://doi.org/10.1079/9780851995120.0227
Kolb T.E., Wagner, M.R., Covington, W.W., 1995. Forest health from different perspectives In: L. G. Eskew, comp. Forest health through silviculture: proceedings of the 1995 National Silviculture Workshop, Mescalero, New Mexico, May 8-11, 1995. Gen. Tech. Rep. RM-GTR-267. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: 5-13.
Komonen A., Puumala I., Várkonyi G., Penttilä R., 2021. Wood-decaying fungi in old-growth boreal forest fragments: extinctions and colonizations over 20 years. Silva Fennica vol. 55 no. 1 article id 10491. 10 p. https://doi.org/10.14214/sf.10491.
Kuuluvainen T., Aakala T., 2011. Natural forest dynamics in boreal Fennoscandia: A review and classification. Silva Fenn. 45: 823-841. ISSN 0037-5330. https://doi.org/10.14214/sf.73
Lábusová J., Morrissey R.C., Trotsiuk V., Janda P., Bače R., Cada V., Mikoláš M., Mrhalová H., Schurman J.S., Svobodová K., Mateju L., Synek M., Svoboda M., 2019. Patterns of forest dynamics in a secondary old-growth beech-dominated forest in the Jizera Mountains Beech Forest Reserve, Czech Republic. iForest 12: 17-26. https://doi.org/10.3832/ifor2702-011
Lackey R.T., 2001. Values, Policy, and Ecosystem Health: Options for resolving the many ecological policy issues we face depend on the concept of ecosystem health, but ecosystem health is based on controversial, value-based assumptions that masquerade as science. BioScience, 51(6): 437-443, https://doi.org/10.1641/0006-3568(2001)051[0437:VPAEH]2.0.CO;2
Lesica P., McCune B., Cooper S.V., Hong W.S., 1991. Differences in lichen and bryophyte communities between old-growth and managed second-growth forests in the Swan Valley, Montana. Can. J. Bot. 69:1745-1755. https://doi.org/10.1139/b91-222.
Linser S., Wolfslehner B., 2022. National Implementation of the Forest Europe Indicators for Sustainable Forest Management. Forests 13: 191. https:// doi.org/10.3390/f13020191.
Lombardi F., Lasserre B., Chirici G., Tognetti R., Marchetti M., 2012. Deadwood occurrence and forest structure as indicators of old-growth forest conditions in Mediterranean mountainous ecosystems, Écoscience, 19:4, 344-355, https://doi.org/10.2980/19-4-3506
Luick R., Hennenberg K., Leuschner C., Grossmann M., Jedicke E., Schoof N., Waldenspuhl T., 2021b. Urwälder, Naturwälder und Wirtschaftswälder im Kontext der Biodiversitätsdebatte und des Klimaschutzes. Teil 1: Funktionen für die biologische Vielfalt und als Kohlenstoffsenke und -speicher.Naturschutz und Landschaftsplanung 53 (12), 12-25. https://doi.org/10.1399/NuL.2021.12.01
Luick R., Reif A., Schneider E., Grossmann M., Fodor E., 2021a. Virgin forests at the heart of Europe - The importance, situation and future of Romania's virgin forests. Mitteilungen des Badischen Landesvereins fur Naturkunde und Naturschutz 24, Freiburg.
Luyssaert S., Schulze E.D., Börner A., Knohl A., Hessenmöller D., Law B.E., Ciais P., Grace J., 2008. Old-growth forests as global carbon sinks. Nature 455:213-215. https://doi.org/10. 1038/nature07276.
Manion P.D., 1991. Tree Disease Concepts. Prentice-Hall, Englewood Cliffs, NJ. 402 pp.
Manion P.D., 2003. Evolution of concepts in forest pathology. Phytopathology, 93: 1052-1055. https://doi.org/10.1094/PHYTO.2003.93.8.1052
Margulis L., Fester R., 1991. Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis. Cambridge, MA: MIT Press.
Medina M., Baker D.M., Baltrus D.A., Bennett G.M., Cardini U., Correa A.M.S., Degnan S.M., Christa G., Kim E., Li J., Nash D.R., Marzinelli E., Nishiguchi M., Prada C., Roth M.S., Saha M., Smith C.I., Theis K.R., Zaneveld J., 2022. Grand Challenges in Coevolution Front. Ecol. Evol. 9:618251. https://doi.org/10.3389/fevo.2021.618251
Michel A.K,, Winter S., 2009. Tree microhabitat structures as indicators of biodiversity in Douglas-fir forests of different stand ages and management histories in the Pacific Northwest, USA. For. Ecol. Manage. 257: 1453-1464 https://doi.org/10.1016/j.foreco.2008.11.027
Midtgaard F., Rukke F.A., Svendrup-Thygesson A., 1998. Habitat of the fungivorous beetle Bolitophagus reticulatus (Coleoptera: Tenebrionidae): effects of basidiocarp size, humidity and competitors. Eur. J. Entol. 95:559-570.
Milgroom M.G., Cortesi P., 2004. Biological control of chestnut blight with hypovirulence: a critical analysis. Annu. Rev. Phytopathol. 42: 311-338. https://doi.org/10.1146/annurev.phyto.42.040803.140325
Morica S., Ginetti B., Ragazzi A., 2012. Species and organ-specificity in endophytes colonizing helthy and declining Mediterranean oaks. Phytopathol. Mediterr. 51: 587-598.
Morica S., Ragazzi A., 2008. Fungal endophytes of Mediterranean oak forests: a lesson from discula quercina. Phytopathology 98:380-386. https://doi.org/10.1094/PHYTO-98-4-0380
Morin R.S., 2020 (compiler). Forest ecosystems health indicators. USDA Forest Service, FS- 1151.
Nagy T., Pfliegler W.P., Takács A., Tökölyi J., Molnár V.A., 2019: Distribution, infection rates and DNA barcoding of Uromyces erythronii (Pucciniaceae), a parasite of Erythronium (Liliaceae) in Europe. - Willdenowia 49: 13-20. https://doi.org/10.3372/wi.49.49103
Negrean G., Anastasiu P., 2006. Invasive and potentially invasive parasite neomycetes from Romania. In: Plant, fungal and habitat diversity investigation and conservation, Bulgaria: Institute of Botany, Bulgarian Academy of Sciences. 514-519.
Newcombe G., Dugan M., 2010. Fungal pathogens of plants in the Homogocene. In: Gherbawy Y, Voigt K, eds. Molecular identification of Fungi. Berlin, Germany: Springer Verlag, 3-34. https://doi.org/10.1007/978-3-642-05042-8_1
Oliva, J., Boberg, J.B., Hopkins, A.J., Stenlid J., 2013. Concepts of epidemiology of forest diseases. In Infectious forest diseases (eds P Gonthier, G Niccolotti), pp. 1-28. Wallingford, UK: CAB International. https://doi.org/10.1079/9781780640402.0001
Oltean M., Negrean G., Popescu A., Roman N., Dihoru G., Sanda V., Mihăilescu S., 1994. Lista roșie a plantelor superioare din România. Academia Română, București: 1-52.
Panzavolta T., Bracalini M., Benigno A., Moricca S., 2021. Alien Invasive Pathogens and Pests Harming Trees, Forests, and Plantations: Pathways, Global Consequences and Management. Forests, 12, 1364. https:// doi.org/10.3390/f12101364.
Parker I.M., Gilbert G.S., 2004 The evolutionary ecology of novel plant -pathogen interactions Annu. Rev. Ecol. Evol. Syst. 35, 675- 700. https://doi.org/10.1146/annurev.ecosys.34.011802.132339
Parrett S.R., Laine A.-L, 2016. The role of hyper parasitism in microbial pathogen ecology and evolution. ISME Journal 10: 1815-1822. https://doi.org/10.1038/ismej.2015.247
Piovesan G., A. Di Filippo Alessandrini A., Biondi F., Schirone B., 2005. Structure, Dynamics and Dendroecology of an Old-Growth Fagus Forest in the Apennines. Journal of Vegetation Science, 16(1), 13-28. https://doi.org/10.1111/j.1654-1103.2005.tb02334.x
Popa I., Badea O., Silaghi D., 2017. Influence of climate on tree health evaluated by defoliation I the ICP level I network (Romania). iForest; 10(3): 554-560 https://doi.org/10.3832/ifor2202-009
Preston G.M., 2017. Profiling the extended phenotype of plant pathogens. Molecular Plant Pathology 18(3): 443-456. https://doi.org/10.1111/mpp.12530
Proctor J.D., 1996. Whose nature? The contested moral terrain of ancient forest. In Cronor, W (ed.) Uncommon ground: toward reinventing nature. Norton W.W. New York, pg: 269-297.
Pysek P., Jarosık V., Pergl J., 2011. Alien plants introduced by different pathways differ in invasion success: unintentional introductions as a threat to natural areas. PLoS ONE 6: e24890. https://doi.org/10.1371/journal.pone.0024890
Rapport D.J., 1992. What is clinical ecology? In Ecosystem health, R. Costanza, B.G. Norton, and B.D. Haskell, eds., pg. 144-156. Island Press, Washington, DC. 269 p.
Rapport D.J., Costanza R., McMichael A.J., 1998. Assessing ecosystem health. TREE 13(10): 397-402. https://doi.org/10.1016/S0169-5347(98)01449-9
Raši R. (coord.), 2020. State of Europe's forests. Ministers Conference on the Protection of forests in Europe. FOREST EUROPE, Liaison Unit Bratislava.
Rassi P. Mannerkoski I., Peltonen S.-L., Alanen A., 2000. 2nd red data book of Finland. - Report, Ministry of Environment Finland.
Remm J., Lõhmus A., 2011. Tree cavities in forests-the broad distribution patternof a keystone structure for biodiversity. Forest Ecology and Management 262: 579-585. https://doi.org/10.1016/j.foreco.2011.04.028
Rizman J., 2014. Draft: Carpathian Red List pf forest habitats. In Kadlečik (ed.) Carpathian Red List of forest habitats. Carpathian list of invasive alien species, draft. The State Nature Conservancy of the Slovak Republic.
Rozenzweig M.L., 2003. Reconciliation ecology and the future of species diversity. Oryx 37(2): 194-205. https://doi.org/10.1017/S0030605303000371
Runnel K., Miettinen O., Lõhmus A., 2021. Polypore fungi as a flagship group to indicate changes in biodiversity - a test case from Estonia, IMA Fung, 12, p. 2. https://doi.org/10.1186/s43008-020-00050-y
Runnel K., Sell I., Löhmus A., 2019b. Recovery of Critically Endangered bracket fungus Amylocystis lapponica in the Estonian network of strictly protected areas. Oryx, 54(4), 478-482. https://doi.org/10.1017/S0030605319000334
Runnel K., Spirin V., Miettinen O., Vlasák J., Dai Y.C., Ryvarden L., Larsson K.H., 2019a. Morphological plasticity in brown-rot fungi: Antrodia is redefined toencompass both poroid and corticioid species. Mycologia 111:871-883 https://doi.org/10.1080/00275514.2019.1640532
Sandhu S. K., Morozov A. Y., Holt R. D., Barfield M., 2021. Revisiting the role of hyperparasitism in the evolution of virulence. Am. Nat. 197, 216-235. https://doi.org/10.1086/712351
Schickhofer M., Schwarz U., 2019. Inventory of Potential Primary and Old-Growth Forest Areas in Romania (PRIMOFARO). Identifying the largest intact forests in the temperate zone of the European Union.
Schmid B., 1990. Some ecological and evolutionary consequences of modular organization and clonal growth in plants. Evol. Trends Plants 4, 25-34.
Seidl R., Schelhaas M.J., Rammer W., Verkerk P.J., 2014. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 4, 806-810. http://dx.doi.org/10.1038/nclimate2318.
Spake R., van der Linde S., Newton A.C., Suz L.M., Bidartondo M.I., Doncaster C.P., 2016. Similar biodiversity of ectomycorrhizal fungi in set-aside plantations and ancient old-growth broadleaved forests. Biol Conserv. 194: 71-79. https://doi.org/10.1016/j.biocon.2015.12.003
Spies T., 2004. Ecological concepts and diversity of old-groth forests. Journal of forestry 102(3): 13-20.
Stamets P.E., 2005. Medicinal polypores of the forests of North America: screening for novel antiviral activity. Int J Med Mushrooms. https://doi.org/10.1615/IntJMedMushrooms.v7.i3.210
Stenlid J., Gustafsson M., 2001. Are rare wood fungi threatened by inability to spread? Ecological Bulletins 49: 85-91
Stenlid J., Oliva J., 2016. Phenotypic interactions between tree hosts and invasive forest pathogens in the light of globalization and climate change. Phil. Trans. R. Soc. B 371: 20150455. http://dx.doi.org/10.1098/rstb.2015.0455.
Stenlid J., Oliva J., Boberg J.B., Hopkins A.J.M., 2011 Emerging diseases in European forest ecosystems and responses in society. Forests 2: 486-504. https://doi.org/10.3390/f2020486
Strogatz S.H. 2001. Exploring complex networks. Nature 410: 268-267. https://doi.org/10.1038/35065725
Sucharzewska E., Dynowska M., Ejdys E., Biedunkiewicz A., Kubiak D., 2012. Hyperparasites of Erysiphales fungi in the urban environment. Pol. J. Natur., Sci. 27(3): 289-299.
Sun J.-Z., Liu X.-Z., McKenzie E. H. C., Jeewon R., Liu J. K., Zhang X.-L., et al., 2019. Fungicolous fungi: terminology, diversity, distribution, evolution and species checklist. Fungal Divers. 95, 337-430. https://doi.org/10.1007/s13225-019-00422-9
Tack A.J.M., Dicke M., 2013. Plant pathogens structure arthropod communities across multiple spatial and temporal scales. Funct.Ecol. 27, 633-645. https://doi.org/10.1111/1365-2435.12087
Tănase C., Pop A., 2005. Red List of Romanian Macrofungi Species, Bioplatform - Romanian National Platform for Biodiversity, Editura Academiei Române, Bucureşti: 101-107.
Thompson J.N., Burdon J.J., 1992. Gene-for-gene coevolution between plants and parasites. Nature 360: 121-125. https://doi.org/10.1038/360121a0
Tilman D., May R.M., Leman C.L., Nowak M.A., 1994. Habitat destruction and the extinction debt. Nature 371: 65-66. https://doi.org/10.1038/371065a0
Toome M., Aime M.C., 2013. Pucciniomycetes. http://tolweb.org/Pucciniomycetes/51246.
Vacuna V., 2022. Update: Verifying wilderness in Ukraine. European Wilderness Society, 16 April, 2022. https://wilderness-society.org/verifying-wilderness-in-ukraine (accesed on April 16, 2022)
Valladares F., Gianoli E., Gómez J.M., 2007. Ecological limits to plant phenotypic plasticity. New Phytol. 176: 749-763. https://doi.org/10.1111/j.1469-8137.2007.02275.x
Vandekerkhove K., De Keersmaeker L., Walleyn R., Köhler F., Crevecoeur L., Govaere L., Thomaes A. Verheyen K., 2011. Reappearance of old-growth elements in lowland woodlands in northern Belgium: Do the associated species follow? Silva Fennica 45(5): 909-935. https://doi.org/10.14214/sf.78
Vora M.N., Hannah L., Lieberman S., Vale M.M., Plowright R.K., Bernstein A.S., 2022. Want to prevent pandemics? Stop spillovers. Nature 505: 419-422. https://doi.org/10.1038/d41586-022-01312-y
Vujanovic V., Brisson J., 2002. Microfungal biodiversity on Fagus grandifolia in an old-growth forest of Eastern North-America. - Phyton (Horn, Austria) 42(2): 315-328.
Welsh H., 1990. Relictual Amphibians and Old-Growth Forests. Conservation Biology - Conserv. Biol. 4. 309-319.https://doi.org/10.1111/j.1523-1739.1990.tb00293.x
Westphal C.N., Tremer G., Von Oheimb J., Hansen K., Von Gadow Hardtle W., 2006. Is the reverse J-shaped diameter distribution universally applicable in European virgin beech forests? Forest Ecology and Management 223: 75-83. https://doi.org/10.1016/j.foreco.2005.10.057
Wilcove D.S., Rothstein D., Dubow J., Phillips A., Losos E. 1998. Quantifying threats to imperiled species in the United States. BioScience, 48: 607-615. https://doi.org/10.2307/1313420
Yang Z., Zheng Q., Zhuo M., Zeng H.-D., Hogan J. A., Lin T.-C. 2021. A culture of conservation: how an ancient forest plantation turned into an old-growth forest reserve - The story of the Wamulin forest. People Nat 3:1014- 102. https://doi.org/10.1002/pan3.10248.
Descărcări
Publicat
Cum cităm
Număr
Secțiune
Licență
Copyright (c) 2022 Ecaterina Fodor, Ioan Ovidiu Haruta
Această lucrare este licențiată în temeiul Creative Commons Attribution-NonCommercial 4.0 International License.
Licența Open Access
Toate articolele și materialele suplimentare publicate în revista BUCOVINA FORESTIERĂ sunt disponibile sub o politică de acces liber gratuit (Open Access Licence) descrisă de BOAI, ceea ce implică accesul liber (fără nici o taxă) și nelimitat, pentru toată lumea, la conținutul integral al acestora.
Publicarea manuscriselor este gratuită, toate cheltuielile fiind suportate de către Facultatea de Silvicultură din cadrul Universități „Ștefan cel Mare” din Suceava.