Modele dendroclimatice pentru molid, brad și fag în Carpații Orientali
DOI:
https://doi.org/10.4316/bf.2024.011Cuvinte cheie:
Picea abies, Abies alba, Fagus sylvatica, date climatice zilnice, lățimea inelului anualRezumat
Studiul relației dintre procesele de creștere radială și factorii climatici pe rețele dendrocronologice regionale, dezvoltate pe gradienți altitudinali sau climatici, permite surprinderea tiparelor dendroclimatice generale, dar și a variabilității inerente. Studiul a vizat analiza variabilității relației dintre creșterea radială și factorii climatici pentru molid, brad și fag, de-a lungul unul gradient altitudinal, pe o rețea de serii dendrocronologice actualizată din Carpații Orientali. Rețeaua dendrocronologică cuprinde 158 arborete pentru molid, 83 arborete pentru brad și 79 arborete pentru fag distribuite pe un gradient altitudinal cuprins între 475 m și 1670 m. Cuantificarea relației dintre indicii de creștere reziduali și temperatura medie, respectiv cantitatea de precipitații, s-a realizat prin intermediul coeficientului de corelație neparametrică Spearman, pe perioade cumulative cu lungime variabilă (20 zile la 120 zile), din luna iulie aferentă anului precedent formării inelului anual până în luna septembrie din sezonul de vegetație curent. Tiparele dendroclimatice pentru fiecare specie și clasă de altitudine sunt exprimate prin valoarea medie a coeficienților de corelație semnificativi statistic și procentul suprafețelor de cercetare cu valori semnificative statistic. În nordul Carpații Orientali la altitudini mai mici de 1100 m deficitul de apă din timpul verii este principalul factor limitativ al proceselor de creștere la molid, brad și fag, la care se adaugă regimul precipitațiilor din toamna precedentă în cazul rășinoaselor. Iernile și primăverile calde favorizează procesele auxologice la brad și molid. Temperatura din timpul verii se corelează pozitiv cu indicii de creștere la molidul de la altitudini mari, respectiv negativ cu creșterea radială la brad, indiferent de altitudine.
Descărcări
Vizualizări
Referințe
Adamič P.C., Levanič T., Hanzu M., Čater M., 2023. Growth Response of European Beech (Fagus sylvatica L.) and Silver Fir (Abies alba Mill.) to Climate Factors along the Carpathian Massive. Forests 14, 1318. https://doi.org/10.3390/f14071318
Aldea J., Ruiz‐Peinado R., Del Río M., Pretzsch H., Heym M., Brazaitis G., Jansons A., Metslaid M., Barbeito I., Bielak K., Hylen G., Holm S., Nothdurft A., Sitko R., Löf M., 2022. Timing and duration of drought modulate tree growth response in pure and mixed stands of Scots pine and Norway spruce. Journal of Ecology 110, 2673–2683. https://doi.org/10.1111/1365-2745.13978
Babst F., Bouriaud O., Poulter B., Trouet V., Girardin M.P., Frank D.C., 2019. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 5, eaat4313. https://doi.org/10.1126/sciadv.aat4313
Babst F., Poulter B., Trouet V., Tan K., Neuwirth B., Wilson R., Carrer M., Grabner M., Tegel W., Levanic T., Panayotov M., Urbinati C., Bouriaud O., Ciais P., Frank, D., 2013. Site- and species-specific responses of forest growth to climate across the European continent. Global Ecology and Biogeography 22, 706–717. https://doi.org/10.1111/geb.12023
Beck W., Sanders T.G.M., Pofahl U., 2013. CLIMTREG: Detecting temporal changes in climate–growth reactions – A computer program using intra-annual daily and yearly moving time intervals of variable width. Dendrochronologia 31, 232–241. https://doi.org/10.1016/j.dendro.2013.02.003
Begović K., Rydval M., Mikac S., Čupić S., Svobodova K., Mikoláš M., Kozák D., Kameniar O., Frankovič M., Pavlin J., Langbehn T., Svoboda M., 2020. Climate-growth relationships of Norway Spruce and silver fir in primary forests of the Croatian Dinaric mountains. Agricultural and Forest Meteorology 288–289, 108000. https://doi.org/10.1016/j.agrformet.2020.108000
Biondi F., Qeadan F., 2008. A Theory-Driven Approach to Tree-Ring Standardization: Defining the Biological Trend from Expected Basal Area Increment. Tree-Ring Research 64, 81–96. https://doi.org/10.3959/2008-6.1
Bose A.K., Scherrer D., Camarero J.J., Ziche D., Babst F., Bigler C., Bolte A., Dorado-Liñán I., Etzold S., Fonti P., Forrester D.I., Gavinet J., Gazol A., De Andrés E.G., Karger D.N., Lebourgeois F., Lévesque M., Martínez-Sancho E., Menzel A., Neuwirth B., Nicolas M., Sanders T.G.M., Scharnweber T., Schröder J., Zweifel R., Gessler A., Rigling A., 2021. Climate sensitivity and drought seasonality determine post-drought growth recovery of Quercus petraea and Quercus robur in Europe. Science of The Total Environment 784, 147222. https://doi.org/10.1016/j.scitotenv.2021.147222
Bosela M., Popa I., Gömöry D., Longauer R., Tobin B., Kyncl J., Kyncl T., Nechita C., Petráš R., Sidor C.G., Šebeň V., Büntgen U., 2016. Effects of post-glacial phylogeny and genetic diversity on the growth variability and climate sensitivity of European silver fir. J Ecol 104, 716–724. https://doi.org/10.1111/1365-2745.12561
Bosela M., Rubio-Cuadrado Á., Marcis P., Merganičová K., Fleischer P., Forrester D.I., Uhl E., Avdagić A., Bellan M., Bielak K., Bravo F., Coll L., Cseke K., Del Rio M., Dinca L., Dobor L., Drozdowski S., Giammarchi F., Gömöryová E., Ibrahimspahić A., Kašanin-Grubin M., Klopčič M., Kurylyak V., Montes F., Pach M., Ruiz-Peinado R., Skrzyszewski J., Stajic B., Stojanovic D., Svoboda M., Tonon G., Versace S., Mitrovic S., Zlatanov T., Pretzsch H., Tognetti R., 2023. Empirical and process-based models predict enhanced beech growth in European mountains under climate change scenarios: A multimodel approach. Science of The Total Environment 888, 164123. https://doi.org/10.1016/j.scitotenv.2023.164123
Bosela M., Tumajer J., Cienciala E., Dobor L., Kulla L., Marčiš P., Popa I., Sedmák R., Sedmáková D., Sitko, R., Šebeň V., Štěpánek P., Büntgen U., 2021. Climate warming induced synchronous growth decline in Norway spruce populations across biogeographical gradients since 2000. Science of The Total Environment 752, 141794. https://doi.org/10.1016/j.scitotenv.2020.141794
Bouriaud O., Popa I., 2009. Comparative dendroclimatic study of Scots pine, Norway spruce, and silver fir in the Vrancea Range, Eastern Carpathian Mountains. Trees 23, 95–106. https://doi.org/10.1007/s00468-008-0258-z
Bowditch E., Santopuoli G., Binder F., Del Río M., La Porta N., Kluvankova T., Lesinski J., Motta R., Pach M., Panzacchi P., Pretzsch H., Temperli C., Tonon G., Smith M., Velikova V., Weatherall A., Tognetti R., 2020. What is Climate-Smart Forestry? A definition from a multinational collaborative process focused on mountain regions of Europe. Ecosystem Services 43, 101113. https://doi.org/10.1016/j.ecoser.2020.101113
Camarero J.J., Gazol A., Sánchez‐Salguero R., Fajardo A., McIntire E.J.B., Gutiérrez E., Batllori E., Boudreau S., Carrer M., Diez J., Dufour‐Tremblay G., Gaire N.P., Hofgaard A., Jomelli V., Kirdyanov A.V., Lévesque E., Liang E., Linares J.C., Mathisen I.E., Moiseev P.A., Sangüesa‐Barreda G., Shrestha K.B., Toivonen J.M., Tutubalina O.V., Wilmking M., 2021. Global fading of the temperature–growth coupling at alpine and polar treelines. Glob. Change Biol. 27, 1879–1889. https://doi.org/10.1111/gcb.15530
Carrer M., Motta R., Nola P., 2012. Significant Mean and Extreme Climate Sensitivity of Norway Spruce and Silver Fir at Mid-Elevation Mesic Sites in the Alps. PLoS ONE 7, e50755. https://doi.org/10.1371/journal.pone.0050755
Cook E.R., 1985. A time series analysis approach to tree ring standardization.
Cook E.R., Kairiukstis L.A., 1990. Methods of dendrochronology: applications in the environmental sciences. Springer Science & Business Media.
Cruz-Alonso V., Pucher C., Ratcliffe S., Ruiz-Benito P., Astigarraga J., Neumann M., Hasenauer H., Rodríguez-Sánchez F., 2023. The easyclimate R package: Easy access to high-resolution daily climate data for Europe. Environmental Modelling & Software 161, 105627. https://doi.org/10.1016/j.envsoft.2023.105627
Efron B., Tibshirani R., 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical science 54–75.
Feltovich N., 2003. Nonparametric tests of differences in medians: comparison of the Wilcoxon–Mann–Whitney and robust rank-order tests. Experimental Economics 6, 273–297.
Fritts H., 1976. Tree rings and climate. Elsevier.
García-García I., Méndez-Cea B., González De Andrés E., Gazol A., Sánchez-Salguero R., Manso-Martínez D., Horreo J.L., Camarero J.J., Linares J.C., Gallego F.J., 2023. Climate and Soil Microsite Conditions Determine Local Adaptation in Declining Silver Fir Forests. Plants 12, 2607. https://doi.org/10.3390/plants12142607
Gazol A., Camarero J.J., Gutiérrez E., Popa I., Andreu‐Hayles L., Motta R., Nola P., Ribas M., Sangüesa‐Barreda G., Urbinati C., Carrer M., 2015. Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. Journal of Biogeography 42, 1150–1162. https://doi.org/10.1111/jbi.12512
Grissino-Mayer H.D., 2001. Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA.
Hacket-Pain A., Ascoli D., Berretti R., Mencuccini M., Motta R., Nola P., Piussi P., Ruffinatto F., Vacchiano G., 2019. Temperature and masting control Norway spruce growth, but with high individual tree variability. Forest Ecology and Management 438, 142–150. https://doi.org/10.1016/j.foreco.2019.02.014
Hacket-Pain A.J., Friend A.D., Lageard J.G.A., Thomas P.A., 2015. The influence of masting phenomenon on growth-climate relationships in trees: explaining the influence of previous summers’ climate on ring width. Tree Physiology 35, 319–330. https://doi.org/10.1093/treephys/tpv007
Hu J., Moore D.J.P., Burns S.P., Monson R.K., 2010. Longer growing seasons lead to less carbon sequestration by a subalpine forest. Global Change Biology 16, 771–783. https://doi.org/10.1111/j.1365-2486.2009.01967.x
Jevšenak J., 2020. New features in the dendroTools R package: Bootstrapped and partial correlation coefficients for monthly and daily climate data. Dendrochronologia 63, 125753. https://doi.org/10.1016/j.dendro.2020.125753
Jevšenak J., 2019. Daily climate data reveal stronger climate-growth relationships for an extended European tree-ring network. Quaternary Science Reviews 221, 105868. https://doi.org/10.1016/j.quascirev.2019.105868
Jevšenak J., Buras A., Babst F., 2024. Shifting potential for high-resolution climate reconstructions under global warming. Quaternary Science Reviews 325, 108486. https://doi.org/10.1016/j.quascirev.2023.108486
Jevšenak J., Levanič T., 2018. dendroTools: R package for studying linear and nonlinear responses between tree-rings and daily environmental data. Dendrochronologia 48, 32–39. https://doi.org/10.1016/j.dendro.2018.01.005
Jevšenak J., Tychkov I., Gričar J., Levanič T., Tumajer J., Prislan P., Arnič D., Popkova M., Shishov V.V., 2021. Growth-limiting factors and climate response variability in Norway spruce (Picea abies L.) along an elevation and precipitation gradients in Slovenia. Int J Biometeorol 65, 311–324. https://doi.org/10.1007/s00484-020-02033-5
Kozlowski T.T., Pallardy S.G., 1996. Physiology of woody plants. Elsevier.
Lebourgeois F., Rathgeber C.B.K., Ulrich E., 2010. Sensitivity of French temperate coniferous forests to climate variability and extreme events (Abies alba, Picea abies and Pinus sylvestris). Journal of Vegetation Science 21, 364–376. https://doi.org/10.1111/j.1654-1103.2009.01148.x
Lens F., Tixier A., Cochard H., Sperry J.S., Jansen S., Herbette, S., 2013. Embolism resistance as a key mechanism to understand adaptive plant strategies. Current Opinion in Plant Biology 16, 287–292. https://doi.org/10.1016/j.pbi.2013.02.005
Levanič T., Gričar J., Gagen M., Jalkanen R., Loader N.J., McCarroll D., Oven P., Robertson I., 2009. The climate sensitivity of Norway spruce [Picea abies (L.) Karst.] in the southeastern European Alps. Trees 23, 169–180. https://doi.org/10.1007/s00468-008-0265-0
Martinez Del Castillo E., Zang C.S., Buras A., Hacket-Pain A., Esper J., Serrano-Notivoli R., Hartl C., Weigel R., Klesse S., Resco De Dios V., Scharnweber T., Dorado-Liñán, I., Van Der Maaten-Theunissen, M., Van Der Maaten E., Jump A., Mikac S., Banzragch B.-E., Beck W., Cavin L., Claessens H., Čada V., Čufar K., Dulamsuren C., Gričar J., Gil-Pelegrín E., Janda P., Kazimirovic M., Kreyling J., Latte N., Leuschner C., Longares L.A., Menzel A., Merela M., Motta R., Muffler L., Nola P., Petritan A.M., Petritan I.C., Prislan P., Rubio-Cuadrado Á., Rydval M., Stajić B., Svoboda M., Toromani E., Trotsiuk V., Wilmking M., Zlatanov T., De Luis M., 2022. Climate-change-driven growth decline of European beech forests. Commun Biol 5, 163. https://doi.org/10.1038/s42003-022-03107-3
Mayr S., Schmid P., Beikircher B., Feng F., Badel E., 2020. Die hard: timberline conifers survive annual winter embolism. New Phytol 226, 13–20. https://doi.org/10.1111/nph.16304
McKight P.E., Najab J., 2010. Kruskal‐wallis test. The corsini encyclopedia of psychology 1–1.
Ponocná T., Chuman T., Rydval M., Urban G., Migaɬa K., Treml V., 2018. Deviations of treeline Norway spruce radial growth from summer temperatures in East-Central Europe. Agricultural and Forest Meteorology 253–254, 62–70. https://doi.org/10.1016/j.agrformet.2018.02.001
Ponocná T., Spyt B., Kaczka R., Büntgen U., Treml V., 2016. Growth trends and climate responses of Norway spruce along elevational gradients in East-Central Europe. Trees 30, 1633–1646. https://doi.org/10.1007/s00468-016-1396-3
Poorter H., Niklas K.J., Reich P.B., Oleksyn J., Poot P., Mommer, L., 2012. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist 193, 30–50. https://doi.org/10.1111/j.1469-8137.2011.03952.x
Popa A., Popa I., Badea O., Bosela M., 2024a. Non-linear response of Norway spruce to climate variation along elevational and age gradients in the Carpathians. Environmental Research 119073. https://doi.org/10.1016/j.envres.2024.119073
Popa A., Popa I., Horvath A., Balabașciuc M., 2021. Răspunsul dendroclimatic al molidului din Depresiunea Gheorgheni. Revista de Silvicultură şi Cinegetică 26.
Popa A., Popa I., Roibu C.-C., Badea O.N., 2022. Do Different Tree-Ring Proxies Contain Different Temperature Signals? A Case Study of Norway Spruce (Picea abies (L.) Karst) in the Eastern Carpathians. Plants 11, 2428. https://doi.org/10.3390/plants11182428
Popa A., Van Der Maaten-Theunissen M., Popa I., Badea O., Van Der Maaten, E., 2024b. Spruce suffers most from drought at low elevations in the Carpathians, though shows high resilience. Forest Ecology and Management 571, 122201. https://doi.org/10.1016/j.foreco.2024.122201
Popa I., 2004. Fundamente metodologice şi aplicaţii de dendrocronologie. Editura Tehnicǎ Silvicǎ.
Pretzsch H., 2021. Trees grow modulated by the ecological memory of their past growth. Consequences for monitoring, modelling, and silvicultural treatment. Forest Ecology and Management 487, 118982. https://doi.org/10.1016/j.foreco.2021.118982
Rennenberg H., Loreto F., Polle A., Brilli F., Fares S., Beniwal R.S., Gessler A., 2006. Physiological Responses of Forest Trees to Heat and Drought. Plant Biology 8, 556–571. https://doi.org/10.1055/s-2006-924084
Roibu C.-C., Palaghianu C., Nagavciuc V., Ionita M., Sfecla V., Mursa A., Crivellaro A., Stirbu M.-I., Cotos M.-G., Popa A., Sfecla I., Popa I., 2022. The Response of Beech (Fagus sylvatica L.) Populations to Climate in the Easternmost Sites of Its European Distribution. Plants 11, 3310. https://doi.org/10.3390/plants11233310
Roibu C.-C., Popa I., Kirchhefer A.J., Palaghianu C., 2017. Growth responses to climate in a tree-ring network of European beech (Fagus sylvatica L.) from the eastern limit of its natural distribution area. Dendrochronologia 42, 104–116. https://doi.org/10.1016/j.dendro.2017.02.003
Schurman J.S., Babst F., Björklund J., Rydval M., Bače, R., Čada V., Janda P., Mikolas M., Saulnier M., Trotsiuk V., Svoboda M., 2019. The climatic drivers of primary Picea forest growth along the Carpathian arc are changing under rising temperatures. Glob Change Biol 25, 3136–3150. https://doi.org/10.1111/gcb.14721
Semeniuc Fecioru A., Teodosiu M., Botezatu A., 2024. Climate triggers and growth effects of cold damage in silver fir (Abies alba Mill.) populations from Eastern Carpathians. Trees 38, 667–679. https://doi.org/10.1007/s00468-024-02505-w
Sidor C.G., Popa I., Vlad R., Cherubini P., 2015. Different tree-ring responses of Norway spruce to air temperature across an altitudinal gradient in the Eastern Carpathians (Romania). Trees 29, 985–997. https://doi.org/10.1007/s00468-015-1178-3
Šimůnek V., Prokůpková A., Vacek Z., Vacek S., Cukor J., Remeš J., Hájek V., D’Andrea G., Šálek M., Nola P., Pericolo O., Holzbachová Š., Ripullone F., 2023. Silver fir tree-ring fluctuations decrease from north to south latitude—total solar irradiance and NAO are indicated as the main influencing factors. Forest Ecosystems 10, 100150. https://doi.org/10.1016/j.fecs.2023.100150
Stanescu V., Sofletea N., Popescu O., 1997. Flora forestiera lemnoasa a Romaniei Editura Ceres, Bucuresti, Romania, pp. 451.
Svobodová K., Langbehn T., Björklund J., Rydval M., Trotsiuk V., Morrissey R.C., Čada V., Janda P., Begovič K., Ágh-Lábusová J., Schurman J.S., Nováková M., Kozák D., Kameniar O., Synek M., Mikoláš M., Svoboda M., 2019. Increased sensitivity to drought across successional stages in natural Norway spruce (Picea abies (L.) Karst.) forests of the Calimani Mountains, Romania. Trees 33, 1345–1359. https://doi.org/10.1007/s00468-019-01862-1
Tognetti R., Smith M., Panzacchi P. (Eds.), 2022. Climate-Smart Forestry in Mountain Regions, Managing Forest Ecosystems. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-80767-2
Valeriano C., Tumajer J., Gazol A., González De Andrés E., Sánchez-Salguero R., Colangelo M., Linares J.C., Valor T., Sangüesa-Barreda G., Julio Camarero J., 2023. Delineating vulnerability to drought using a process-based growth model in Pyrenean silver fir forests. Forest Ecology and Management 541, 121069. https://doi.org/10.1016/j.foreco.2023.121069
Van Der Maaten E., Stolz J., Thurm E.A., Schröder J., Henkel A., Leinemann L., Profft I., Voth W., Van Der Maaten-Theunissen M., 2024. Long-term growth decline is not reflected in crown condition of European beech after a recent extreme drought. Forest Ecology and Management 551, 121516. https://doi.org/10.1016/j.foreco.2023.121516
Vejpustková M., Čihák T., Fišer, P., 2023. The increasing drought sensitivity of silver fir (Abies alba Mill.) is evident in the last two decades. J. For. Sci. 69, 67–79. https://doi.org/10.17221/172/2022-JFS
Vitali V., Büntgen U., Bauhus J., 2018. Seasonality matters—The effects of past and projected seasonal climate change on the growth of native and exotic conifer species in Central Europe. Dendrochronologia 48, 1–9. https://doi.org/10.1016/j.dendro.2018.01.001
Vitali V., Büntgen U., Bauhus J., 2017. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Glob Change Biol 23, 5108–5119. https://doi.org/10.1111/gcb.13774
Descărcări
Publicat
Cum cităm
Număr
Secțiune
Licență
Copyright (c) 2024 Ionel Popa, Andrei Popa, Mihai Balabașciuc
Această lucrare este licențiată în temeiul Creative Commons Attribution-NonCommercial 4.0 International License.
Licența Open Access
Toate articolele și materialele suplimentare publicate în revista BUCOVINA FORESTIERĂ sunt disponibile sub o politică de acces liber gratuit (Open Access Licence) descrisă de BOAI, ceea ce implică accesul liber (fără nici o taxă) și nelimitat, pentru toată lumea, la conținutul integral al acestora.
Publicarea manuscriselor este gratuită, toate cheltuielile fiind suportate de către Facultatea de Silvicultură din cadrul Universități „Ștefan cel Mare” din Suceava.