Importanța lemnului mort în conservarea diversității coleopterelor saproxilice
DOI:
https://doi.org/10.4316/bf.2025.007Cuvinte cheie:
lemn mort, gândaci saproxilici, coleopteraRezumat
Lemnul mort reprezintă o componentă esențială a ecosistemelor forestiere, contribuind la menținerea echilibrului ecologic și susținerea biodiversității. Prin furnizarea de resurse trofice și habitate specifice, acesta sprijină o diversitate largă de specii, în special insectele saproxilice. În pădurile europene, aproximativ 4.000 de specii de coleoptere sunt strict dependente de lemnul aflat în diferite stadii de degradare, evidențiind importanța acestei resurse pentru structura și funcționarea ecosistemelor forestiere. Lucrarea își propune să ofere o sinteză clară și accesibilă privind rolul lemnului mort în menținerea biodiversității forestiere, cu un accent deosebit pe relația acestuia cu coleopterele saproxilice. Se urmărește prezentarea aspectelor introductive referitoare la problematica generală, analiza factorilor care influențează procesul de descompunere a lemnului și modul în care aceștia afectează relația cu insectele, în special cu coleopterele, totodată detaliind succesiunea speciilor saproxilice în funcție de stadiile de degradare ale lemnului, precum și impactul gestiunii silvice asupra cantității și calității lemnului mort și asupra comunităților de insecte asociate acestuia. Sunt detaliate principalele variabile ecologice care influențează aceste interacțiuni, precum cantitatea și dimensiunile lemnului mort, stadiul de degradare al acestuia, caracteristicile mediului înconjurător, specia de arbore asociată și alți factori ecologici determinanți. Studiul face trimitere mai ales la pădurile din România, fiind adresat atât specialiștilor, cât și factorilor de decizie și publicului larg interesat de conservarea biodiversității forestiere. Concluzionăm că lemnul mort are un impact determinant asupra organizării comunităților de insecte saproxilice, reflectând interacțiuni ecologice complexe și multidimensionale. Conservarea și gestionarea adecvată a acestei resurse sunt esențiale pentru susținerea diversității biologice și rezilienței ecosistemelor forestiere. Promovarea unei înțelegeri aprofundate a rolului lemnului mort poate contribui la formularea unor politici forestiere mai sustenabile și orientate spre conservarea biodiversității.
Descărcări
Vizualizări
Referințe
Aakala T., Heikkinen J., 2024. Harmonized decay classification for dead wood in Nordic National Forest Inventories. Scandinavian Journal of Forest Research, 39(1): 1-7. https://doi.org/10.1080/02827581.2023.2282086
Abrahamsson M., Jonsell M., Niklasson M., Lindbladh M., 2009. Saproxylic beetle assemblages in artificially created high‐stumps of spruce (Picea abies) and birch (Betula pendula/pubescens)–does the surrounding landscape matter?. Insect Conservation and Diversity, 2(4): 284-294. https://doi.org/10.1111/j.1752-4598.2009.00066.x
Albert J., Platek M., Cizek L., 2012. Vertical stratification and microhabitat selection by the Great Capricorn Beetle (Cerambyx cerdo) (Coleoptera: Cerambycidae) in open-grown, veteran oaks. European Journal of Entomology, 109(4): 553-559. https://doi.org/10.14411/eje.2012.069
Andringa J. I., Zuo J., Berg M. P., Klein R., van't Veer J., de Geus R., de Beaumont M., Goudzwaard L., van Hal J., Broekman R., van Logtestijn R. S. P., Li Y., Fujii S., Lammers M., Hefting M. M., Sass-Klaassen U., Cornelissen J. H. C., 2019. Combining tree species and decay stages to increase invertebrate diversity in dead wood. Forest Ecology and Management, 441: 80-88. https://doi.org/10.1016/j.foreco.2019.03.029
Anonymous., 2013-2018. Inventarul Forestier Național, Rezultate IFN – Ciclul II | National Forest Inventory (roifn.ro), Online at: https://roifn.ro/site/rezultate-ifn-2/
Anonymous., 2017a. Annex K: Wood for biodiversity – dead wood, nest trees, riparian areas, etc. In: The FSC National Forest Stewardship Standard of Romania. FSC International Center GmbH: 1-172.
Anonymous., 2017b. Annex 1: PEFC-Criteria and Indicators for assessing sustainable forest management in Romania In: PEFC Romania-Romanian Forest Certification Scheme - System Description: 1-19.
Anonymous., 2020. Raport consolidat referitor la cunoștințele existente și la practicile actuale privind gestionarea lemnului mort și rolul său în ecosistemele forestiere. Proiect „Promovarea lemnului mort pentru creșterea rezilienței pădurilor în zona transfrontalieră România-Ucraina (RESFOR 2soft/1.2/13): 1-61.
Ås S., 1993. Are habitat islands islands? Woodliving beetles (Coleoptera) in deciduous forest fragments in boreal forest. Ecography, 16(3): 219-228. https://doi.org/10.1111/j.1600-0587.1993.tb00212.x
Bässler C., Müller J., Dziock F., Brandl R., 2010. Effects of resource availability and climate on the diversity of wood‐decaying fungi. Journal of Ecology, 98(4): 822-832. https://doi.org/10.1111/j.1365-2745.2010.01669.x
Bernes C., Jonsson B. G., Junninen K., Lõhmus A., Macdonald E., Müller J., Sandström J., 2015. What is the impact of active management on biodiversity in boreal and temperate forests set aside for conservation or restoration? A systematic map. Environmental Evidence, 4: 1-22. https://doi.org/10.1186/s13750-015-0050-7
Blaser S., Prati D., Senn-Irlet B., Fischer M., 2013. Effects of forest management on the diversity of deadwood-inhabiting fungi in Central European forests. Forest Ecology and Management, 304: 42-48. https://doi.org/10.1016/j.foreco.2013.04.043
Blažytė‐Čereškienė L., Karalius V., 2012. Habitat requirements of the endangered beetle Boros schneideri (Panzer, 1796)(Coleoptera: Boridae). Insect Conservation and Diversity, 5(3): 186-191. https://doi.org/10.1111/j.1752-4598.2011.00149.x
Błońska E., Kacprzyk M., Spolnik A., 2017. Effect of deadwood of different tree species in various stages of decomposition on biochemical soil properties and carbon storage. Ecological Research, 32: 193-203. https://doi.org/10.1007/s11284-016-1430-3
Bobiec A., 2002. Living stands and dead wood in the Białowieża forest: suggestions for restoration management. Forest Ecology and Management, 165(1-3): 125-140. https://doi.org/10.1016/S0378-1127(01)00655-7
Bobiec A., Gutowski J. M., Laudenslayer W. F., Pawlaczyk P., Zub K., 2005. “The afterlife of a tree”. WWF Poland. Warszawa – Hajnówka: 1-227. ISBN: 8392071212.
Boddy L., 1983. Microclimate and moisture dynamics of wood decomposing in terrestrial ecosystems. Soil Biology and Biochemistry, 15(2): 149-157. https://doi.org/10.1016/0038-0717(83)90096-2
Bouget C., Larrieu L., Brin A., 2014. Key features for saproxylic beetle diversity derived from rapid habitat assessment in temperate forests. Ecological Indicators, 36: 656-664. https://doi.org/10.1016/j.ecolind.2013.09.031
Bouget C., Larrieu L., Nusillard B., Parmain, G., 2013. In search of the best local habitat drivers for saproxylic beetle diversity in temperate deciduous forests. Biodiversity and Conservation, 22(9): 2111-2130. https://doi.org/10.1007/s10531-013-0531-3
Bouget C., Nusillard B., Pineau X., Ricou C., 2012. Effect of deadwood position on saproxylic beetles in temperate forests and conservation interest of oak snags. Insect Conservation and Diversity, 5(4): 264-278. https://doi.org/10.1111/j.1752-4598.2011.00160.x
Brin A., Bouget C., Brustel H., Jactel H., 2011. Diameter of downed woody debris does matter for saproxylic beetle assemblages in temperate oak and pine forests. Journal of Insect Conservation, 15: 653-669. https://doi.org/10.1007/s10841-010-9364-5
Brin A., Brustel H., Jactel H., 2009. Species variables or environmental variables as indicators of forest biodiversity: a case study using saproxylic beetles in Maritime pine plantations. Annals of Forest Science, 66(3): 1-11. https://doi.org/10.1051/forest/2009009
Brunet J., Fritz Ö., Richnau G., 2010. Biodiversity in European beech forests-a review with recommendations for sustainable forest management. Ecological Bulletins: 77-94.
Bruno J.F., Stachowicz J.J., Bertness M.D., 2003. Inclusion of facilitation into ecological theory. Trends in Ecology and Evolution, 18(3): 119-125.
Brustel H., 2004. Coléoptères saproxyliques et valeur biologique des forêts françaises, Collection dossiers forestiers, 13. Office National des Forêts : 1-297.
Buezo J., Medina N. G., Hereş A.-M., Petrițan I. C., Cornelissen J. H. C., Petrițan A.-M., Esteban R., Ilinca E., Stoian R., Curiel Yuste J., 2024. Downed woody debris carbon emissions in a European temperate virgin forest as driven by species, decay classes, diameter and microclimate. Science of the Total Environment, 912, 169133: 1-14. https://doi.org/10.1016/j.scitotenv.2023.169133
Burke D., Goulet H., 1998. Landscape and area effects on beetle assemblages in Ontario. Ecography, 21(5): 472-479. https://doi.org/10.1111/j.1600-0587.1998.tb00438.x
Buse J., 2012. “Ghosts of the past”: flightless saproxylic weevils (Coleoptera: Curculionidae) are relict species in ancient woodlands. Journal of Insect Conservation, 16: 93-102. https://doi.org/10.1007/s10841-011-9396-5
Buse J., Entling M. H., Ranius T., Assmann T., 2016. Response of saproxylic beetles to small-scale habitat connectivity depends on trophic levels. Landscape Ecology, 31: 939-949. https://doi.org/10.1007/s10980-015-0309-y
Buse J., Ranius T., Assmann T., 2008. An endangered longhorn beetle associated with old oaks and its possible role as an ecosystem engineer. Conservation Biology, 22(2): 329-337. https://doi.org/10.1111/j.1523-1739.2007.00880.x
Buse J., Schröder B., Assmann T., 2007. Modelling habitat and spatial distribution of an endangered longhorn beetle–a case study for saproxylic insect conservation. Biological Conservation, 137(3): 372-381. https://doi.org/10.1016/j.biocon.2007.02.025
Bußler H., Müller J., 2004. Borkenkäfer in wärmegetönten Eichenmischwäldern Nordbayerns. Forst und Holz, 59: 175–178.
Bütler R., Patty L., Le Bayon R. C., Guenat C., Schlaepfer R., 2007. Log decay of Picea abies in the Swiss Jura Mountains of central Europe. Forest Ecology and Management, 242(2-3): 791-799. https://doi.org/10.1016/j.foreco.2007.02.017
Cálix M., Alexander K.N.A., Nieto A., Dodelin B., Soldati F., Telnov D., Vazquez-Albalate X., Aleksandrowicz O., Audisio P., Istrate P., Jansson N., Legakis A., Liberto A., Makris C., Merkl O., Mugerwa Pettersson R., Schlaghamersky J., Bologna M.A., Brustel H., Buse J., Novák V., Purchart L., 2018. European red list of saproxylic beetles. Brussels, Belgium: IUCN.
Carlsson S., Bergman K. O., Jansson N., Ranius T., Milberg P., 2016. Boxing for biodiversity: evaluation of an artificially created decaying wood habitat. Biodiversity and Conservation, 25: 393-405. https://doi.org/10.1007/s10531-016-1057-2
Carpaneto G. M., Baviera C., Biscaccianti A. B., Brandmayr P., Mazzei A., Mason F., Battistoni A., Teofili C., Rondinini C., Fattorini S., Audisio P., 2015. A Red List of Italian Saproxylic Beetles: taxonomic overview, ecological features and conservation issues (Coleoptera). Fragmenta Entomologica, 47(2): 53-126. https://doi.org/10.13133/2284-4880/138
Ceianu I., 1978. Succesiunile animale în scoarța și lemnul de molid (pe baza cercetărilor din Carpații Orientali). Anuarul Muzeului Județean Suceva, Științele Naturii (V): 53-61.
Cenuşă R., 1995. Câteva aspecte privind dinamica şi importanța necromasei lemnoase în arborete naturale de molid. Bucovina Forestieră, IV(2): 62-63.
Chivulescu Ș., Leca Ș., Silaghi D., Cristea V., 2018. Structural biodiversity and dead wood in virgin forests from Eastern Carpathians. Agriculture and Forestry, 64(1): 177-188. https://doi.org/10.17707/AgricultForest.64.1.20
Christensen M., Hahn K., Mountford E. P., Ódor P., Standovár T., Rozenbergar D., Diaci J., Wijdeven S., Meyer P., Winter S., Vrska T., 2005. Dead wood in European beech (Fagus sylvatica) forest reserves. Forest Ecology and Management, 210(1-3): 267-282. https://doi.org/10.1016/j.foreco.2005.02.032
Clements F.E., 1916. Plant succession: An analysis of the development of vegetation. Carnegie Institution of Washington, District of Columbia, 242: 1-512.
Cornelissen J. H. C., Sass-Klaassen U., Poorter L., van Geffen K., van Logtestijn R. S. P., van Hal J., Goudzwaard L., Sterck F. J., Klaassen R. K. W. M., Freschet G. T., van der Wal A., Eshuis H., Zuo J., de Boer W., Lamers T., Weemstra M., Cretin V., Martin R., den Ouden J., Berg M. P., Aerts R., Mohren G. M. J., Hefting M. M., 2012. Controls on coarse wood decay in temperate tree species: birth of the LOGLIFE experiment. Ambio, 41: 231-245. https://doi.org/10.1007/s13280-012-0304-3
Cornwell W. K., Cornelissen J. H. C., Allison S. D., Bauhus J., Eggleton P., Preston C. M., Scarff F., Weedon J. T., Wirth C., Zanne, A. E., 2009. Plant traits and wood fates across the globe: rotted, burned, or consumed?. Global Change Biology, 15(10): 2431-2449. https://doi.org/10.1111/j.1365-2486.2009.01916.x
Dajoz R., 2000. Insects and forests: the role and diversity of insects in the forest environment. Intercept Limited, Paris, France: 1-668. ISBN: 1898298688.
Davies Z.G., Tyler C., Stewart G.B., Pullin A. S., 2006 Are current management recommendations for conserving saproxylic invertebrates effective? Systematic Review No.17, Centre of Evidence-Based Conservation, University of Birmingham, Birmingham, UK: 1-43.
De Meo I., Agnelli A. E., Graziani A., Kitikidou K., Lagomarsino A., Milios E., Radoglou K., Paletto, A., 2017. Deadwood volume assessment in Calabrian pine (Pinus brutia Ten.) peri-urban forests: Comparison between two sampling methods. Journal of Sustainable Forestry, 36(7): 666-686. https://doi.org/10.1080/10549811.2017.1345685
Debeljak M., 2006. Coarse woody debris in virgin and managed forest. Ecological Indicators, 6(4): 733-742. https://doi.org/10.1016/j.ecolind.2005.08.031
Didham R. K., Lawton J. H., Hammond P. M., Eggleton P., 1998b. Trophic structure stability and extinction dynamics of beetles (Coleoptera) in tropical forest fragments. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353(1367): 437-451. https://doi.org/10.1098/rstb.1998.0221
Didham, R. K., Hammond P. M., Lawton J. H., Eggleton P., Stork N. E., 1998a. Beetle species responses to tropical forest fragmentation. Ecological Monographs, 68(3): 295-323. https://doi.org/10.1890/0012-9615(1998)068[0295:BSRTTF]2.0.CO;2
Dieler J., Uhl E., Biber P., Müller J., Rötzer T., Pretzsch H., 2017. Effect of forest stand management on species composition, structural diversity, and productivity in the temperate zone of Europe. European Journal of Forest Research, 136: 739-766. https://doi.org/10.1007/s10342-017-1056-1
Dudley N., Vallauri D., 2004. Deadwood–Living Forests. World Wildlife Fund for Nature, Gland, Switzerland: 1-15.
Duduman G., Duduman M.-L., Avăcăriței D., Barnoaiea I., Barbu C.-O., Ciornei I., Clinovschi F., Coșofreț V. C., Cotos M.-G., Dănilă G., Dănilă I.-C., Drăgoi M., Flocea M.-N., Horodnic S.-A., Iacobescu O., Mazăre G. C., Măciucă A., Mursa A., Palaghianu C., Pohonțu C. M., Roibu C.-C., Savin A., Tomescu C. V., Scriban R.-E., 2020. A permanent research platform for ecological studies in intact temperate mountainous forests from Slătioara UNESCO site and its surroundings, Romania. Forests, 11(9): 1004. https://doi.org/10.3390/f11091004
Eckelt A., Müller J., Bense U., Brustel H., Bußler H., Chittaro Y., Cizek L., Frei A., Holzer E., Kadej M., Kahlen M., Köhler F., Möller G., Mühle H., Sanchez A., Schaffrath U., Schmidl J., Smolis A., Szallies A., Németh T., Wurst C., Thorn S., Christensen R. H. B., Seibold S., 2018. “Primeval forest relict beetles” of Central Europe: a set of 168 umbrella species for the protection of primeval forest remnants. Journal of Insect Conservation, 22: 15-28. https://doi.org/10.1007/s10841-017-0028-6
Ehnström B., Axelsson R., 2002. Galleries and exit holes of insects living in bark and wood. ArtDatabanken, SLU, Almqvist and Wiksell, Uppsala, Sweden: 1-512. ISBN: 9789188506269.
Ekbom B., Schroeder L. M., Larsson S., 2006. Stand specific occurrence of coarse woody debris in a managed boreal forest landscape in central Sweden. Forest Ecology and Management, 221(1-3): 2-12. https://doi.org/10.1016/j.foreco.2005.10.038
Elton C.S., 1966. The Pattern of Animal Communities. Methuen and Co. Ltd., London: 1-430. ISBN:9780412218804.
Fayt P., Dufrêne M., Branquart E., Hastir P., Pontégnie C., Henin J. M., Versteirt V., 2006. Contrasting responses of saproxylic insects to focal habitat resources: the example of longhorn beetles and hoverflies in Belgian deciduous forests. Journal of Insect Conservation, 10: 129-150. https://doi.org/10.1007/s10841-006-6289-0
Ferro M. L., Gimmel M. L., Harms K. E., Carlton C. E., 2009. The beetle community of small oak twigs in Louisiana, with a literature review of Coleoptera from fine woody debris. The Coleopterists Bulletin, 63(3): 239-263. https://doi.org/10.1649/1141.1
Floren A., Krüger D., Müller T., Dittrich M., Rudloff R., Hoppe B., Linsenmair, K. E., 2015. Diversity and interactions of wood-inhabiting fungi and beetles after deadwood enrichment. PLoS One, 10(11): e0143566. https://doi.org/10.1371/journal.pone.0143566
Franc, N, Götmark F., Økland B., Nordén B., Paltto H., 2007. Factors and scales potentially important for saproxylic beetles in temperate mixed oak forest. Biological conservation, 135(1): 86-98. https://doi.org/10.1016/j.biocon.2006.09.021
Franklin J.F., Fischer J., Lindenmayer D.B., 2006. General management principles and a checklist of strategies to guide forest biodiversity conservation. Biological Conservation 131: 433-445. https://doi.org/10.1016/j.biocon.2006.02.019
Fridman J., Walheim M., 2000. Amount, structure, and dynamics of dead wood on managed forestland in Sweden. Forest Ecology and Management, 131(1-3): 23-36. https://doi.org/10.1016/S0378-1127(99)00208-X
Fukami T., 2015. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annual Review of Ecology, Evolution, and Systematics, 46(1): 1-23. https://doi.org/10.1146/annurev-ecolsys-110411-160340
Geib S. M., Filley T. R., Hatcher P. G., Hoover K., Carlson J. E. Jimenez-Gasco M. del M., Nakagawa-Izumi A., Sleighter R. L., Tien M., 2008. Lignin degradation in wood-feeding insects. Proceedings of the National Academy of Sciences, 105(35): 12932-12937.
https://doi.org/10.1073/pnas.0805257105
Gibb H., Hjältén J., Ball J. P., Atlegrim O., Pettersson R. B., Hilszczański J., Johansson T., Danell K., 2006b. Effects of landscape composition and substrate availability on saproxylic beetles in boreal forests: a study using experimental logs for monitoring assemblages. Ecography, 29(2): 191-204. https://doi.org/10.1111/j.2006.0906-7590.04372.x
Gibb H., Pettersson R. B., Hjältén J., Hilszczański J., Ball J. P., Johansson T., Atlegrim O., Danell K., 2006a. Conservation-oriented forestry and early successional saproxylic beetles: responses of functional groups to manipulated dead wood substrates. Biological Conservation, 129(4), 437-450. https://doi.org/10.1016/j.biocon.2005.11.010
Giurgiu V., 2002. Biodiversitatea și regenerarea arboretelor. Bucovina forestieră, 10(1-2): 45-54.
Gleason H. A., 1926 The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club, 53: 7–26.
Goczał, J. Rossa R., 2017. Dead wood complexity shapes the pattern of the occurrence of threatened saproxylic beetle Cucujus cinnaberinus. Polish Journal of Ecology, 65(1): 158-165. https://doi.org/10.3161/15052249PJE2017.65.1.014
Gonzalez-Polo M., Fernández-Souto A., Austin A.T., 2013. Coarse woody debris stimulates soil enzymatic activity and litter decomposition in an old-growth temperate forest of Patagonia, Argentina. Ecosystems, 16: 1025-1038. https://doi.org/10.1007/s10021-013-9665-0
Gossner M. M., Lachat T., Brunet J., Isacsson G., Bouget C., Brustel H., Brandl R., Weisser W. W., Müller, J., 2013. Current near‐to‐nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conservation Biology, 27(3): 605-614. https://doi.org/10.1111/cobi.12023
Gossner M. M., Wende B., Levick S., Schall P., Floren A., Linsenmair K. E., Steffan-Dewenter I., Schulze E.-D., Weisser W. W., 2016. Deadwood enrichment in European forests–Which tree species should be used to promote saproxylic beetle diversity?. Biological Conservation, 201: 92-102. https://doi.org/10.1016/j.biocon.2016.06.032
Graham S. A., 1924. Temperature as a limiting factor in the life of subcortical insects. Journal of Economic Entomology, 17(3): 377-383. https://doi.org/10.1093/jee/17.3.377
Griffin D. M., 1977. Water potential and wood-decay fungi. Annual Review of Phytopathology, 15(1): 319-329. https://doi.org/10.1146/annurev.py.15.090177.001535
Grigoroaea D., 2014. Cercetări cu privire la distribuția lemnului mort în Parcul Național Călimani. Revista Pădurilor, 5-6: 50-55.
Grigoroaea, D. Vlad R., 2015. Dinamica lemnului mort în relație cu anumite caracteristici ale ecosistemelor forestiere de molid în Parcul Național Călimani. Revista Pădurilor, 130(1-2): 16-20.
Grigoroea D., 2015. Cercetări biometrice asupra lemnului mort în Nord-Vestul Parcului Național Călimani. Teză de doctorat, Universitatea ”Ștefan cel Mare„ Suceava, Facultatea de Silvicultură: 1-84.
Grove S. J., 2002. Saproxylic insect ecology and the sustainable management of forests. Annual Review of Ecology and Systematics, 33(1): 1-23. https://doi.org/10.1146/annurev.ecolsys.33.010802.150507
Grove S., Meggs J., 2003. Coarse woody debris, biodiversity and management: a review with particular reference to Tasmanian wet eucalypt forests. Australian Forestry, 66(4): 258-272. https://doi.org/10.1080/00049158.2003.10674920
Gutowski J. M., Sućko K., Zub K., Bohdan A., 2014. Habitat preferences of Boros schneideri (Coleoptera: Boridae) in the natural tree stands of the Białowieża forest. Journal of Insect Science, 14(1): 276. https://doi.org/10.1093/jisesa/ieu138
Hagge J., Bässler C., Gruppe A., Hoppe B., Kellner H., Krah F.-S., Müller J., Seibold S., Stengel E., Thorn, S., 2019. Bark coverage shifts assembly processes of microbial decomposer communities in dead wood. Proceedings of the Royal Society B, 286(1912): 20191744. https://doi.org/10.1098/rspb.2019.1744
Hammond H.J., Langor D.W., Spence J.R., 2004. Saproxylic beetles (Coleoptera) using Populus in boreal aspen stands of western Canada: spatiotemporal variation and conservation of assemblages. Canadian Journal of Forest Research , 34 (1): 1-19. https://doi.org/10.1139/x03-192
Hanski I. 2000. Extinction debt and species credit in boreal forests: modelling the consequences of different approaches to biodiversity conservation. In: Annales Zoologici Fennici: 271-280.
Hardersen S., Zapponi L., 2018. Wood degradation and the role of saproxylic insects for lignoforms. Applied Soil Ecology, 123: 334-338. https://doi.org/10.1016/j.apsoil.2017.09.003
Harmon M. E. 2001. Carbon sequestration in forests: addressing the scale question. Journal of Forestry, 99(4): 24-29. https://doi.org/10.1093/jof/99.4.24
Harmon M. E., Fasth B. G., Yatskov M., Kastendick D., Rock J., Woodall C.W., 2020. Release of coarse woody detritus-related carbon: a synthesis across forest biomes. Carbon Balance and Management, 15: 1-21. https://doi.org/10.1186/s13021-019-0136-6
Harmon M. E., Franklin J. F., Swanson F. J., Sollins P., Gregory S. V., Lattin J. D., Anderson N. H., Cline S. P., Aumen N. G., Sedell J. R., Lienkaemper G. W., Cromack K., Jr., Cummins K. W., 1986. Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research, 15: 133-302. https://doi.org/10.1016/S0065-2504(08)60121-X
Harris L. D., Silva-Lopez G., 1992. Forest fragmentation and the conservation of biological diversity. In: Fiedler P.L., Jain S.K. (ed.) Conservation Biology: The Theory and Practice of Nature Conservation, Preservation, and Management. Chapman and Hall, London: 197-237. https://doi.org/10.1007/978-1-4684-6426-9_8
Hilszczański J., Gibb H., Bystrowski C., 2007. Insect natural enemies of Ips typographus (L.)(Coleoptera, Scolytinae) in managed and unmanaged stands of mixed lowland forest in Poland. Journal of Pest Science, 80: 99-107. https://doi.org/10.1007/s10340-006-0160-7
Hofgaard A., 1993. Structure and regeneration patterns in a virgin Picea abies forest in northern Sweden. Journal of Vegetation Science, 4(5): 601-608. https://doi.org/10.2307/3236125
Horak J., Chumanová E. V. A., Hilszczański J., 2012. Saproxylic beetle thrives on the openness in management: a case study on the ecological requirements of Cucujus cinnaberinus from Central Europe. Insect Conservation and Diversity, 5(6). https://doi.org/10.1111/j.1752-4598.2011.00173.x
Horak J., Pavlíček J., 2013. Tree level indicators of species composition of saproxylic beetles in old-growth mountainous spruce–beech forest through variation partitioning. Journal of Insect Conservation, 17: 1003-1009. https://doi.org/10.1007/s10841-013-9583-7
Horák J., Pavlíček J., Kout J., Halda J.P., 2018. Winners and losers in the wilderness: response of biodiversity to the abandonment of ancient forest pastures. Biodiversity and Conservation, 27: 3019-3029. https://doi.org/10.1007/s10531-018-1585-z
Humphrey J., Bailey S., 2012. Managing deadwood in forests and woodlands. Forestry Commission Practice Guide. Forestry Commission, Edinburgh: 1–24. ISBN: 978085538577.
Hunter Jr. M. L., 1990. Wildlife, forests, and forestry. Principles of managing forests for biological diversity. In: Biological Conservation, 63, Prentice Hall: 1-370. ISBN: 0131136186.
Jacobsen R.M., Birkemoe T., Sverdrup‐Thygeson A., 2015. Priority effects of early successional insects influence late successional fungi in dead wood. Ecology and Evolution, 5(21): 4896-4905. https://doi.org/10.1002/ece3.1751
Jaworski T., Plewa R., Tarwacki G., Sućko K., Hilszczański J., Horák J., 2019. Ecologically similar saproxylic beetles depend on diversified deadwood resources: From habitat requirements to management implications. Forest Ecology and Management, 449: 117462. https://doi.org/10.1016/j.foreco.2019.117462
Johansson T., Gibb H., Hjältén J., Pettersson R. B., Hilszczański J., Alinvi O., Ball J. P., Danell K., 2007. The effects of substrate manipulations and forest management on predators of saproxylic beetles. Forest Ecology and Management, 242(2-3): 518-529. https://doi.org/10.1016/j.foreco.2007.01.064
Johnson M. L., Gaines M. S., 1990. Evolution of dispersal: theoretical models and empirical tests using birds and mammals. Annual Review of Ecology and Systematics: 449-480.
Jonášová M., Prach K., 2004. Central-European mountain spruce (Picea abies (L.) Karst.) forests: regeneration of tree species after a bark beetle outbreak. Ecological Engineering, 23(1): 15-27. https://doi.org/10.1016/j.ecoleng.2004.06.010
Jones C. G., Lawron J. H., Shachak M., 1997. Positive and negative effects of organisms as physical ecosystem engineers. Ecology, 78(7): 1946-1957. https://doi.org/10.1890/0012-9658(1997)078[1946:PANEOO]2.0.CO;2
Jonsell M., Abrahamsson M., Widenfalk L., Lindbladh M., 2019. Increasing influence of the surrounding landscape on saproxylic beetle communities over 10 years succession in dead wood. Forest Ecology and Management, 440: 267-284. https://doi.org/10.1016/j.foreco.2019.02.021
Jonsell M., Hansson J., Wedmo L., 2007. Diversity of saproxylic beetle species in logging residues in Sweden–comparisons between tree species and diameters. Biological Conservation, 138(1-2): 89-99. https://doi.org/10.1016/j.biocon.2007.04.003
Jonsell M., Schroeder M., Weslien J., 2005. Saproxylic beetles in high stumps of spruce: Fungal flora important for determining the species composition. Scandinavian Journal of Forest Research, 20(1): 54-62. https://doi.org/10.1080/02827580510008211
Jonsell M., Weslien J., 2003. Felled or standing retained wood—it makes a difference for saproxylic beetles. Forest Ecology and Management, 175(1-3): 425-435. https://doi.org/10.1016/S0378-1127(02)00143-3
Jonsell M., Weslien J., Ehnström B., 1998. Substrate requirements of red-listed saproxylic invertebrates in Sweden. Biodiversity and Conservation, 7: 749-764. https://doi.org/10.1023/A:1008888319031
Juutilainen K., Mönkkönen M., Kotiranta H., Halme P., 2014. The effects of forest management on wood-inhabiting fungi occupying dead wood of different diameter fractions. Forest Ecology and Management, 313: 283-291. https://doi.org/10.1016/j.foreco.2013.11.019
Kahl T., Arnstadt T., Baber K., Bässler C., Bauhus J., Borken W., Buscot F., Floren A., Heibl C., Hessenmöller D., Hofrichter M., Hoppe B., Kellner H., Krüger D., Linsenmair K. E., Matzner E., Otto P., Purahong W., Seilwinder C., Schulze E.-D., Gossner M. M., 2017. Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. Forest Ecology and Management, 391: 86–95. https://doi.org/10.1016/j.foreco.2017.02.012
Kärvemo S., Björkman C., Johansson T., Weslien J., Hjältén J., 2017. Forest restoration as a double‐edged sword: The conflict between biodiversity conservation and pest control. Journal of Applied Ecology, 54(6): 1658-1668. https://doi.org/10.1111/1365-2664.12905
Kašák J., Foit J., 2018. Shortage of declining and damaged sun-exposed trees in European mountain forests limits saproxylic beetles: a case study on the endangered longhorn beetle Ropalopus ungaricus (Coleoptera: Cerambycidae). Journal of Insect Conservation, 22: 171-181. https://doi.org/10.1007/s10841-018-0050-3
Keller M., (Ed.) 2011. Swiss National Forest Inventory. Manual of the Field Survey 2004–2007. Swiss Federal Research Institute WSL, Birmensdorf, CH.
Kenis M., Wegensteiner R., Griffin C. T., 2004a. Parasitoids, predators, nematodes and pathogens associated with bark weevil pests. In: “Bark and wood boring insects in living trees in Europe, a synthesis”-Lieutier F., Day K.R., Battisti A., Gregoire J-C., Evans H.F. (eds). Kluwer Academic Publishers, The Netherlands: 395-414. https://doi.org/10.1007/978-1-4020-2241-8_18
Kenis M., Wermelinger B., Grégoire J. C., 2004b. Research on parasitoids and predators of Scolytidae - a review. In: “Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis”- Lieutier F., Day K.R., Battisti A., Gregoire J-C., Evans H.F. (eds). Kluwer Academic Publishers, The Netherlands: 237-290. https://doi.org/10.1007/978-1-4020-2241-8
Kolström M., Lumatjärvi J., 2000. Saproxylic beetles on aspen in commercial forests: a simulation approach to species richness. Forest Ecology and Management, 126(2): 113-120. https://doi.org/10.1016/S0378-1127(99)00095-X
Lachat T., Müller J., 2018. Importance of primary forests for the conservation of saproxylic insects. In: Ulyshen M.D. (Ed.), Saproxylic Insects: Diversity, Ecology and Conservation. Zoological Monographs. Springer, Cham: 581–605. https://doi.org/10.1007/978-3-319-75937-1_17
Lachat T., Wermelinger B., Gossner M. M., Bussler H., Isacsson G., Müller J., 2012. Saproxylic beetles as indicator species for dead-wood amount and temperature in European beech forests. Ecological Indicators, 23: 323-331. https://doi.org/10.1016/j.ecolind.2012.04.013
Larrieu L., Cabanettes A., Delarue A., 2012. Impact of silviculture on dead wood and on the distribution and frequency of tree microhabitats in montane beech-fir forests of the Pyrenees. European Journal of Forest Research, 131(3): 773-786. https://doi.org/10.1007/s10342-011-0551-z
Larrieu L., Paillet Y., Winter S., Bütler R., Kraus D., Krumm F., Lachat T., Michel A. K., Regnery B., Vandekerkhove K., 2018. Tree related microhabitats in temperate and Mediterranean European forests: A hierarchical typology for inventory standardization. Ecological Indicators, 84: 194-207. https://doi.org/10.1016/j.ecolind.2017.08.051
Lassauce A., Paillet Y., Jactel H., Bouget C., 2011. Deadwood as a surrogate for forest biodiversity: meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecological Indicators, 11(5): 1027-1039. https://doi.org/10.1016/j.ecolind.2011.02.004
Leach J. G., Orr L. W., Christensen C., 1937. Further studies on the interrelationship of insects and fungi in the deterioration of felled Norway pine logs. Journal of Agricultural Research, 55(2).
Lee S. I., Spence J. R., Langor D.W., 2014. Succession of saproxylic beetles associated with decomposition of boreal white spruce logs. Agricultural and Forest Entomology, 16(4): 391-405. https://doi.org/10.1111/afe.12069
Lemperiere G., Marage D., 2010. The influence of forest management and habitat on insect communities associated with dead wood: a case study in forests of the southern French Alps. Insect Conservation and Diversity, 3(3): 236-245. https://doi.org/10.1111/j.1752-4598.2010.00094.x
Lier M., Köhl M., Korhonen K. T., Linser S., Prins K., Talarczyk A., 2022. The new EU forest strategy for 2030: a new understanding of sustainable forest management? Forests, 13(2): 245. https://doi.org/10.3390/f13020245
Lindbladh M., Abrahamsson M., Seedre M., Jonsell M., 2007. Saproxylic beetles in artificially created high-stumps of spruce and birch within and outside hotspot areas. Biodiversity and Conservation, 16: 3213-3226. https://doi.org/10.1007/s10531-007-9173-7
Lindhe, A. Lindelöw Å., Åsenblad N., 2005. Saproxylic beetles in standing dead wood density in relation to substrate sun-exposure and diameter. Biodiversity and Conservation, 14: 3033-3053. https://doi.org/10.1007/s10531-004-0314-y
Liu Q., Hytteborn H., 1991. Gap structure, disturbance and regeneration in a primeval Picea abies forest. Journal of Vegetation Science, 2(3): 391-402. https://doi.org/10.2307/3235932
Liu S.S., Zhang G.M., Zhu J.U.N., 1995. Influence of temperature variations on rate of development in insects: analysis of case studies from entomological literature. Annals of the Entomological Society of America, 88(2); 107-119. https://doi.org/10.1093/aesa/88.2.107
Lombardi F., Lasserre B., Tognetti R., Marchetti M., 2008. Deadwood in relation to stand management and forest type in Central Apennines (Molise, Italy). Ecosystems, 11: 882-894. https://doi.org/10.1007/s10021-008-9167-7
Marage D., Lemperiere G., 2005. The management of snags: A comparison in managed and unmanaged ancient forests of the Southern French Alps. Annals of Forest Science, 62(2): 135-142. https://doi.org/10.1051/forest:2005005
Martikainen P., Siitonen J., Kaila L., Punttila P., Rauh J., 1999. Bark beetles (Coleoptera, Scolytidae) and associated beetle species in mature managed and old-growth boreal forests in southern Finland. Forest Ecology and Management, 116(1-3): 233-245. https://doi.org/10.1016/S0378-1127(98)00462-9
Martikainen P., Siitonen J., Punttila P., Kaila L., Rauh J., 2000. Species richness of Coleoptera in mature managed and old-growth boreal forests in southern Finland. Biological conservation, 94(2): 199-209. https://doi.org/10.1016/S0006-3207(99)00175-5
Maser C., Anderson R. G., Cromack K., Jr., Williams J. T., Martin R. E., 1979. Dead and down woody material. Wildlife Habitats in Managed Forests: The Blue Mountains of Oregon and Washington (ed. by J. W. Thomas). Agriculture Handbook No. 553, pp. 78–95. U.S. Department of Agriculture Forest Service, Washington, District of Columbia.
Mason F., Zapponi L., 2015. The forest biodiversity artery: towards forest management for saproxylic conservation. iForest-Biogeosciences and Forestry, 9(2): 205. https://doi.org/10.3832/ifor1657-008
Mazzei, A. Bonacci T., Contarini E., Zetto T., Brandmayr P., 2011. Rediscovering the ‘umbrella species’ candidate Cucujus cinnaberinus (Scopoli, 1763) in Southern Italy (Coleoptera Cucujidae), and notes on bionomy. Italian Journal of Zoology, 78(2): 264-270. https://doi.org/10.1080/11250003.2010.485210
Măciucă A., Roibu C., 2012. Dead wood–an important issue for forest biodiversity conservation. Present Environment and Sustainable Development, 6 (1): 299-308.
Merganičová K., Merganič J., Svoboda M., Bače R., Šebeň V., 2012. Deadwood in forest ecosystems. Forest Ecosystems–More than Just Trees, In: Tech Book: 81-108. ISBN: 9535102028.
Meyer P., Schmidt M., 2011. Accumulation of dead wood in abandoned beech (Fagus sylvatica L.) forests in northwestern Germany. Forest Ecology and Management, 261(3): 342-352. https://doi.org/10.1016/j.foreco.2010.08.037
Michalová Z., Morrissey R. C., Wohlgemuth T., Bače R., Fleischer P., Svoboda M., 2017. Salvage-logging after windstorm leads to structural and functional homogenization of understory layer and delayed spruce tree recovery in Tatra Mts., Slovakia. Forests, 8(3): 88. https://doi.org/10.3390/f8030088
Miklín J., Sebek P., Hauck D., Konvicka O., Cizek L., 2018. Past levels of canopy closure affect the occurrence of veteran trees and flagship saproxylic beetles. Diversity and Distributions, 24(2): 208-218. https://doi.org/10.1111/ddi.12670
Mirea M. D., Manolache S., Pioarcă-Ciocanea C. M., Niță A., Miu I. V., Popescu V. D., Brodie B. S., Dragomir M. I., Militaru I., Chiriac S., Rozylowicz L. 2021. Conservation of saproxylic beetles in the Carpathians. Research Ideas and Outcomes, 7: e63874. https://doi.org/10.3897/rio.7.e63874
Montes F., Cañellas I., Montero G., 2005. Characterisation of coarse woody debris in two Scots pine forests in Spain. In Marchetti M. (ed): Monitoring and Indicators of Forest Biodiversity in Europe–From Ideas to Operationality. EFI Proceedings 51: 171-180. ISBN: 9525453057.
Moroni M. T., 2006. Disturbance affects history dead wood abundance in Newfoundland boreal forests. Canadian Journal of Forest Research , 36 (12), 3194-3208. https://doi.org/10.1139/x06-195
Müller J., Brunet J., Brin A., Bouget C., Brustel H., Bußler H., Förster B., Isacsson G., Köhler F., Lachat T., Gossner M. M., 2013. Implications from large‐scale spatial diversity patterns of saproxylic beetles for the conservation of European Beech forests. Insect Conservation and Diversity, 6(2): 162-169. https://doi.org/10.1111/j.1752-4598.2012.00200.x
Müller J., Brustel H., Brin A., Bußler H., Bouget C., Obermaier E., Heidinger I. M. M., Lachat T., Förster B., Horak J., Procházka J., Köhler F., Larrieu L., Bense U., Isacsson G., Zapponi L., Gossner M. M., 2015. Increasing temperature may compensate for lower amounts of dead wood in driving richness of saproxylic beetles. Ecography, 38(5): 499-509. https://doi.org/10.1111/ecog.00908
Müller J., Bußler H., Bense U., Brustel H., Flechtner G., 2005. Urwald relict species–Saproxylic beetles indicating structural qualities and habitat tradition. Waldökologie online: AFSV-Berichte der Arbeitsgemeinschaft Forstliche Standorts-und Vegetationskunde, (2): 106-113.
Müller J., Bußler H., Kneib T., 2008a. Saproxylic beetle assemblages related to silvicultural management intensity and stand structures in a beech forest in Southern Germany. Journal of Insect Conservation, 12: 107-124. https://doi.org/10.1007/s10841-006-9065-2
Müller J., Jarzabek‐Müller A., Bussler H., Gossner M. M., 2014. Hollow beech trees identified as keystone structures for saproxylic beetles by analyses of functional and phylogenetic diversity. Animal Conservation, 17(2): 154-162. https://doi.org/10.1111/acv.12075
Müller J., Ulyshen M., Seibold S., Cadotte M., Chao A., Bässler C., Vogel S., Hagge J., Weiß I., Baldrian P., Tláskal V., Thorn S., 2020. Primary determinants of communities in deadwood vary among taxa but are regionally consistent. Oikos, 129(10): 1579-1588. https://doi.org/10.1111/oik.07335
Müller M. M., Varama M., Heinonen J., Hallaksela A. M., 2002. Influence of insects on the diversity of fungi in decaying spruce wood in managed and natural forests. Forest Ecology and Management, 166(1-3): 165-181. https://doi.org/10.1016/S0378-1127(01)00671-5
Müller, J. Bußler H., Goßner M., Rettelbach T., Duelli P., 2008b. The European spruce bark beetle Ips typographus in a national park: from pest to keystone species. Biodiversity and Conservation, 17: 2979-3001. https://doi.org/10.1007/s10531-008-9409-1
Müller, J. Bütler R., 2010. A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests. European Journal of Forest Research, 129(6): 981-992. https://doi.org/10.1007/s10342-010-0400-5
Munteanu C., Niță M.D., Abrudan I. V., Radeloff V.C., 2016. Historical forest management in Romania is imposing strong legacies on contemporary forests and their management. Forest Ecology and Management, 361: 179-193. https://doi.org/10.1016/j.foreco.2015.11.023
Næsset E. 1999. Relationship between relative wood density of Picea abies logs and simple classification systems of decayed coarse woody debris. Scandinavian Journal of Forest Research, 14(5): 454-461. https://doi.org/10.1080/02827589950154159
Nagel T. A., Mikac S., Dolinar M., Klopčič M., Keren S., Svoboda M., Diaci J., Bončina A., Paulić V., 2017. The natural disturbance regime in forests of the Dinaric Mountains: A synthesis of evidence. Forest Ecology and Management, 388: 29-42. https://doi.org/10.1016/j.foreco.2016.07.047
Nieto A., Alexander K.N.A., 2010. European Red List of Saproxylic Beetles Luxembourg. Publications Office of the European Union, Malaga: 1-45.
Nilsson S. G., Baranowski R., 1997. Habitat predictability and the occurrence of wood beetles in old‐growth beech forests. Ecography, 20(5): 491-498. https://doi.org/10.1111/j.1600-0587.1997.tb00417.x
Noss R. F., Csuti B., 1997. Habitat fragmentation. In: Meffe G. K., Carroll C. R. (ed.) Principles of Conservation Biology. 2nd edition. Sinauer Associates, Sunderland, Massachusetts: 269- 304. ISBN: 0878935215.
Novais S., Calderón-Cortés N., Sánchez-Montoya G., Quesada M., 2018. Arthropod facilitation by wood-boring beetles: spatio-temporal distribution mediated by a twig-girdler ecosystem engineer. Journal of Insect Science, 18(5): 14. https://doi.org/10.1093/jisesa/iey097
Ódor P., Heilmann-Clausen J., Christensen M., Aude E., van Dort K. W., Piltaver A., Siller I., Veerkamp M. T., Walleyn R., Standovár T., van Hees A. F. M., Kosec J., Matočec N., Kraigher H., Grebenc T., 2006. Diversity of dead wood inhabiting fungi and bryophytes in semi-natural beech forests in Europe. Biological Conservation, 131(1): 58-71. https://doi.org/10.1016/j.biocon.2006.02.004
Økland B., 1996. A comparison of three methods of trapping saproxylic beetles. European Journal of Entomology, 93(2): 195-209.
Økland B., Bakke A., Hågvar S., Kvamme T., 1996. What factors influence the diversity of saproxylic beetles? A multiscaled study from a spruce forest in southern Norway. Biodiversity and Conservation, 5: 75-100. https://doi.org/10.1007/BF00056293
Paillet Y., Pernot C., Boulanger V., Debaive N., Fuhr M., Gilg O., Gosselin F., 2015. Quantifying the recovery of old-growth attributes in forest reserves: A first reference for France. Forest Ecology and Management, 346: 51-64. https://doi.org/10.1016/j.foreco.2015.02.037
Parisi F., Pioli S., Lombardi F., Fravolini G., Marchetti M., Tognetti R., 2018. Linking deadwood traits with saproxylic invertebrates and fungi in European forests-a review. iForest-Biogeosciences and Forestry, 11(3): 423. https://doi.org/10.3832/ifor2670-011
Pastorella F., Avdagić A., Čabaravdić A., Mraković A., Osmanović M., Paletto A., 2016. Tourists’ perception of deadwood in mountain forests. Annals of Forest Research, 59(2): 311-326. https://doi.org/10.15287/afr.2016.482
Patrick D. A., Hunter Jr M. L., Calhoun A.J., 2006. Effects of experimental forestry treatments on a Maine amphibian community. Forest Ecology and Management, 234(1-3): 323-332. https://doi.org/10.1016/j.foreco.2006.07.015
Paulus H. F., 1980. Einige Vorschläge für Hilfsprogramme unserer gefährdeter Käfer. Natur und Landschaft, 55: 28-32.
Pedlar J. H., Pearce J. L., Venier L. A., McKenney D.W., 2002. Coarse woody debris in relation to disturbance and forest type in boreal Canada. Forest Ecology and Management, 158(1-3): 189-194. https://doi.org/10.1016/S0378-1127(00)00711-8
Pelyukh O., Paletto A., Zahvoyska L., 2019. People's attitudes towards deadwood in forest: evidence from the Ukrainian Carpathians. Journal of Forest Science, 65 (5): 171–182. https://doi.org/10.17221/144/2018-JFS
Penttilä R., Junninen K., Punttila P., Siitonen J., 2013. Effects of forest restoration by fire on polypores depend strongly on time since disturbance–a case study from Finland based on a 23-year monitoring period. Forest Ecology and Management, 310: 508-516. https://doi.org/10.1016/j.foreco.2013.08.061
Persiani A. M., Audisio P., Lunghini D., Maggi O., Granito V. M., Biscaccianti A. B., Chiavetta U., Marchetti M., 2010. Linking taxonomical and functional biodiversity of saproxylic fungi and beetles in broad‐leaved forests in southern Italy with varying management histories. Plant Biosystems, 144(1): 250-261. https://doi.org/10.1080/11263500903561114
Persson Y., Vasaitis R., Långström B., Öhrn P., Ihrmark K., Stenlid J. , 2009. Fungi vectored by the bark beetle Ips typographus following hibernation under the bark of standing trees and in the forest litter. Microbial ecology, 58: 651-659. https://doi.org/10.1007/s00248-009-9520-1
Petrițan I. C., Mihăilă V.V., Yuste J.C., Bouriaud O., Petrițan A.M., 2023. Deadwood density, C stocks and their controlling factors in a beech-silver fir mixed virgin European forest. Forest Ecology and Management, 539: 121007. https://doi.org/10.1016/j.foreco.2023.121007
Petrițan, I. C. Commarmot B., Hobi M. L., Petrițan A. M., Bigler C., Abrudan I. V., Rigling A., 2015. Structural patterns of beech and silver fir suggest stability and resilience of the virgin forest Șinca in the Southern Carpathians, Romania. Forest Ecology and Management, 356: 184-195. https://doi.org/10.1016/j.foreco.2015.07.015
Pickett S. T. A., White P. S., (Eds.) 1985. The Ecology of Natural Disturbance and Patch Dynamics. Academic Press: 1-472. ISBN: 9780125545204.
Priewasser K., Brang P., Bachofen H., Bugmann H., Wohlgemuth T., 2013. Impacts of salvage-logging on the status of deadwood after windthrow in Swiss forests. European Journal of Forest Research, 132: 231-240. https://doi.org/10.1007/s10342-012-0670-1
Radu S., 2006. The ecological role of deadwood in natural forests. In: Nature conservation: Concepts and practice. Springer, Berlin, Heidelberg: 137-141. https://doi.org/10.1007/978-3-540-47229-2_16
Radu S., Coandă C., 2013. Lemnul mort și rolul acestuia în ecosistemele forestiere virgine și cvasivirgine. In: Giurgiu V.(Red.), Pădurile virgine și cvasivirgine ale României. Editura Academiei Române: 146-168. ISBN: 9732722878.
Ranius T., Ekvall H., Jonsson M., Bostedt G. , 2005. Cost-efficiency of measures to increase the amount of coarse woody debris in managed Norway spruce forests. Forest Ecology and Management, 206(1-3): 119-133. https://doi.org/10.1016/j.foreco.2004.10.061
Ranius T., Jansson N., 2000. The influence of forest regrowth, original canopy cover and tree size on saproxylic beetles associated with old oaks. Biological Conservation, 95(1): 85-94. https://doi.org/10.1016/S0006-3207(00)00007-0
Ranius T., Martikainen P., Kouki J., 2011. Colonisation of ephemeral forest habitats by specialised species: beetles and bugs associated with recently dead aspen wood. Biodiversity and Conservation, 20: 2903-2915. https://doi.org/10.1007/s10531-011-0124-y
Ranius, T. Caruso A., Jonsell M., Juutinen A., Thor G., Rudolphi J., 2014. Dead wood creation to compensate for habitat loss from intensive forestry. Biological Conservation, 169: 277-284. https://doi.org/10.1016/j.biocon.2013.11.029
Rudinsky J. A., 1962. Ecology of scolytidae. Annual Review of Entomology, 7(1): 327-348. https://doi.org/10.1146/annurev.en.07.010162.001551
Russell M. B., Fraver S., Aakala T., Gove J. H., Woodall C. W., D’Amato A. W., Ducey M. J., 2015. Quantifying carbon stores and decomposition in dead wood: A review. Forest Ecology and Management, 350: 107-128. https://doi.org/10.1016/j.foreco.2015.04.033
Russo D., Cistrone L., Garonna A.P., 2011. Habitat selection by the highly endangered long-horned beetle Rosalia alpina in Southern Europe: a multiple spatial scale assessment. Journal of Insect Conservation, 15: 685-693. https://doi.org/10.1007/s10841-010-9366-3
Saint‐Germain M., Drapeau P., M. Buddle C., 2007. Host‐use patterns of saproxylic phloeophagous and xylophagous Coleoptera adults and larvae along the decay gradient in standing dead black spruce and aspen. Ecography, 30(6): 737-748. https://doi.org/10.1111/j.2007.0906-7590.05080.x
Sánchez-Galván I.R., Quinto J., Micó E., Galante E., Marcos-García M.A., 2014. Facilitation among saproxylic insects inhabiting tree hollows in a Mediterranean forest: the case of cetonids (Coleoptera: Cetoniidae) and syrphids (Diptera: Syrphidae). Environmental Entomology, 43(2): 336-343. https://doi.org/10.1603/EN13075
Sandström J., Bernes C., Junninen K., Lõhmus A., Macdonald E., Müller J., Jonsson B. G., 2019. Impacts of dead wood manipulation on the biodiversity of temperate and boreal forests. A systematic review. Journal of Applied Ecology, 56(7): 1770-1781. https://doi.org/10.1111/1365-2664.13395
Schiegg K. 2000a. Are there saproxylic beetle species characteristic of high dead wood connectivity?. Ecography, 23(5): 579-587. https://doi.org/10.1111/j.1600-0587.2000.tb00177.x
Schiegg K., 2000b. Effects of dead wood volume and connectivity on saproxylic insect species diversity. Ecoscience, 7(3): 290-298. https://doi.org/10.1080/11956860.2000.11682598
Schiegg K., 2001. Saproxylic insect diversity of beech: limbs are richer than trunks. Forest Ecology and Management, 149(1-3): 295-304. https://doi.org/10.1016/S0378-1127(00)00563-6
Schroeder L. M., Ranius T., Ekbom B., Larsson S., 2006. Recruitment of saproxylic beetles in high stumps created for maintaining biodiversity in a boreal forest landscape. Canadian Journal of Forest Research, 36(9): 2168-2178. https://doi.org/10.1139/x06-119
Sebek P., Bace R., Bartos M., Benes J., Chlumska Z., Dolezal J., Dvorsky M., Kovar J., Machac O., Mikatova B., Perlik M., Platek M., Polakova S., Skorpik M., Stejskal R., Svoboda M., Trnka F., Vlasin M., Zapletal M., Cizek L., 2015. Does a minimal intervention approach threaten the biodiversity of protected areas? A multi-taxa short-term response to intervention in temperate oak-dominated forests. Forest Ecology and Management, 358: 80-89. https://doi.org/10.1016/j.foreco.2015.09.008
Seibold S., Bässler C., Brandl R., Büche B., Szallies A., Thorn S., Ulyshen M. D., Müller J., 2016. Microclimate and habitat eterogeneity as the major drivers of beetle diversity in dead wood. Journal of Applied Ecology, 53(3): 934-943. https://doi.org/10.1111/1365-2664.12607
Seibold S., Bässler C., Brandl R., Gossner M. M., Thorn S., Ulyshen M. D., Müller J., 2015. Experimental studies of dead-wood biodiversity—a review identifying global gaps in knowledge. Biological Conservation, 191: 139-149. https://doi.org/10.1016/j.biocon.2015.06.006
Seibold S., Thorn S., 2018. The importance of dead-wood amount for saproxylic insects and how it interacts with dead-wood diversity and other habitat factors. In: Ulyshen M.D. (Ed.), Saproxylic Insects: Diversity, Ecology and Conservation. Zoological Monographs. Springer, Cham: 607-637. https://doi.org/10.1007/978-3-319-75937-1_18
Seibold S., Weisser W. W., Ambarlı D., Gossner M. M., Mori A. S., Cadotte M. W., Hagge J., Bässler C., Thorn S., 2023. Drivers of community assembly change during succession in wood‐decomposing beetle communities. Journal of Animal Ecology, 92(5): 965-978. https://doi.org/10.1111/1365-2656.13843
Siitonen J., 2001. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecological Bulletins: 11-41.
Siitonen J., Martikainen P., 1994. Occurrence of rare and threatened insects living on decaying Populus tremula: a comparison between Finnish and Russian Karelia. Scandinavian Journal of Forest Research, 9(1-4): 185-191. https://doi.org/10.1080/02827589409382830
Siitonen J., Martikainen P., Punttila P., Rauh J., 2000. Coarse woody debris and stand characteristics in mature managed and old-growth boreal mesic forests in southern Finland. Forest Ecology and Management, 128(3): 211-225. https://doi.org/10.1016/S0378-1127(99)00148-6
Smith G. D., Carroll A. L., Lindgren B.S., 2011. Facilitation in bark beetles: endemic mountain pine beetle gets a helping hand. Agricultural and Forest Entomology, 13(1): 37-43. https://doi.org/10.1111/j.1461-9563.2010.00499.x
Southwood T. R., 1977. Habitat, the templet for ecological strategies?. Journal of Animal Ecology, 46(2): 337-365. https://doi.org/10.2307/3817
Speight M.C.D., 1989. Saproxylic invertebrates and their conservation. Strasbourg: Council of Europe, Publications and Documents Division, Strasbourg: 1-79. ISBN: 9287116792.
Stachowicz J. J., 2001. Mutualism, facilitation, and the structure of ecological communities: positive interactions play a critical, but underappreciated, role in ecological communities by reducing physical or biotic stresses in existing habitats and by creating new habitats on which many species depend. Bioscience, 51(3); 235-246. https://doi.org/10.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2
Stockland J.N., Siitonen J., 2012a. Species diversity of saproxylic organisms. In: Stokland J.N., Siitonen J., Jonsson B.G. (Eds.) Biodiversity in Dead Wood. Cambridge University Press, New York: 248–274. ISBN: 9780521888738.
Stokland J.N., Siitonen J., 2012b. Mortality factors and decay succession. In: Stokland J.N., Siitonen J., Jonsson B.G. (Eds.) Biodiversity in Dead Wood. Cambridge University Press: 110–149. ISBN: 9780521888738.
Stokland J.N., Siitonen J., Jonsson B.G., 2012. Biodiversity in Dead Wood. Cambridge University Press: 1-495. ISBN: 9780521888738.
Stokland J.N., Tomter S.M., Söderberg U. , 2004. Development of dead wood indicators for biodiversity monitoring: experiences from Scandinavia. Monitoring and Indicators of Forest Biodiversity in Europe—From Ideas to Operationality, 51: 207-226. ISBN: 9525453057.
Strid Y., Schroeder M., Lindahl B., Ihrmark K., Stenlid J., 2014. Bark beetles have a decisive impact on fungal communities in Norway spruce stem sections. Fungal Ecology, 7: 47-58. https://doi.org/10.1016/j.funeco.2013.09.003
Strong D.R., Lawton J.H., Southwood S.R., 1984. Insects on plants. Community patterns and mechanisms. Harvard University Press: 1-313. ISBN: 9780674455139.
Suh S-O., McHugh J.V., Pollock D.D., Blackwell M., 2005. The beetle gut: a hyperdiverse source of novel yeasts. Mycological research, 109(3): 261-265. https://doi.org/10.1017/S0953756205002388
Tatti D., Fatton V., Sartori L., Gobat J.M., Le Bayon R.C., 2018. What does ‘lignoform’really mean?. Applied Soil Ecology, 123: 632-645. https://doi.org/10.1016/j.apsoil.2017.06.037
Teodosiu M., 2014. Evaluarea naturalității și a structurii arboretelor în rezervațiile Pădurea Voievodeasa și Codrul Secular Loben din Obcinele Bucovinei. Bucovina Forestieră, 14(2): 173-184.
Teodosiu M., Bouriaud O. B., 2012. Deadwood specific density and its influential factors: a case study from a pure Norway spruce old-growth forest in the Eastern Carpathians. Forest Ecology and Management, 283: 77-85. https://doi.org/10.1016/j.foreco.2012.06.050
Teodosiu M.C., 2012. Structura și dinamica arboretelor de molid din ecosistemele Rezervației Giumalău. Teză de doctorat, Universitatea ”Transilvania” din Brașov, Facultatea de Silvicultură și exploatări forestiere: 1-167.
Thorn S., Bässler C., Bußler H., Lindenmayer D. B., Schmidt S., Seibold S., Wende B., Müller, J., 2016. Bark-scratching of storm-felled trees preserves biodiversity at lower economic costs compared to debarking. Forest Ecology and Management, 364: 10-16. https://doi.org/10.1016/j.foreco.2015.12.044
Tomescu R., Târziu D. R., Turcu D-O. 2011. Importanța pentru Pădure a Lemnului Mort. ProEnvironment Promediu, 4(7).
Turcu D-O., 2012. Cercetări privind dinamica structurii făgetelor virgine și a mortalității arborilor din Rezervația Naturală „Izvoarele Nerei”. Teză de doctorat, Universitatea ”Transilvania” din Brașov, Facultatea de Silvicultură și exploatări forestiere: 1-148.
Ulyshen M. D., Hanula J. L., 2009. Responses of arthropods to large-scale manipulations of dead wood in loblolly pine stands of the southeastern United States. Environmental Entomology, 38(4): 1005-1012. https://doi.org/10.1603/022.038.0407
Ulyshen M. D., Hanula J. L., 2010. Patterns of saproxylic beetle succession in loblolly pine. Agricultural and Forest Entomology, 12(2). https://doi.org/10.1111/j.1461-9563.2009.00467.x
Ulyshen M.D., 2016. Wood decomposition as influenced by invertebrates. Biological Reviews, 91(1): 70-85. https://doi.org/10.1111/brv.12158
Ulyshen M.D., Müller J., Seibold S., 2016. Bark coverage and insects influence wood decomposition: Direct and indirect effects. Applied Soil Ecology, 105: 25-30. https://doi.org/10.1016/j.apsoil.2016.03.017
Ulyshen M.D., Šobotník J., 2018. An introduction to the diversity, ecology, and conservation of saproxylic insects. In: Ulyshen M.D. (Ed.) Saproxylic Insects: Diversity, Ecology and Conservation. Zoological Monographs. Springer, Cham: 797–834. https://doi.org/10.1007/978-3-319-75937-1_1
Väisänen R., Biström O., Heliövaara K., 1993. Sub-cortical Coleoptera in dead pines and spruces: is primeval species composition maintained in managed forests?. Biodiversity and Conservation, 2: 95-113. https://doi.org/10.1007/BF00056127
Vandekerkhove K., De Keersmaeker L., Menke N., Meyer P., Verschelde P., 2009. When nature takes over from man: Dead wood accumulation in previously managed oak and beech woodlands in North-western and Central Europe. Forest Ecology and Management, 258(4): 425-435. https://doi.org/10.1016/j.foreco.2009.01.055
Vandekerkhove K., Thomaes A., Crèvecoeur L., De Keersmaeker L., Leyman A., Köhler F., 2016. Saproxylic beetles in non-intervention and coppice-with-standards restoration management in Meerdaal forest (Belgium): an exploratory analysis. iForest-Biogeosciences and Forestry, 9(4): 536. https://doi.org/10.3832/ifor1841-009
Vanderwel M. C. Malcolm J. R., Smith S. M., Islam N. 2006a. Insect community composition and trophic guild structure in decaying logs from eastern Canadian pine-dominated forests. Forest Ecology and Management, 225(1-3): 190-199. https://doi.org/10.1016/j.foreco.2005.12.051
Vanderwel M.C., Malcolm J.R., Smith S.M., 2006b. An integrated model for snag and downed woody debris decay class transitions. Forest Ecology and Management, 234(1-3): 48-59. https://doi.org/10.1016/j.foreco.2006.06.020
Vasile D., Lazăr G., Cojocariu D., Enescu R., Crișan V., Scărlătescu V., Ienășoiu G., Petrițan A. M., 2017. Studiu fitosociologic comparativ între o pădure de amestec virgină și o pădure parcursă cu prima tăiere progresivă din zona Șinca. Revista de Silvicultură și Cinegetică, 22(40).
Vítková L., Bače R., Kjučukov P., Svoboda M., 2018. Deadwood management in Central European forests: Key considerations for practical implementation. Forest Ecology and Management, 429: 394-405. https://doi.org/10.1016/j.foreco.2018.07.034
Vlad R., Sidor C.G., Dincă L., Constandache C., Grigoroaea D., Ispravnic A., Pei G. Dead wood diversity in a Norway spruce forest from the Călimani National Park (the Eastern Carpathians). Baltic Forestry, 25(2): 238-248. https://doi.org/10.46490/vol25iss2pp238
Vodka S., Konvicka M., Cizek L., 2009. Habitat preferences of oak-feeding xylophagous beetles in a temperate woodland: implications for forest history and management. Journal of Insect Conservation, 13: 553-562. https://doi.org/10.1007/s10841-008-9202-1
Warren M. S., Key R. S., 1991. Woodlands: Past, present, potential. In: Collins N. M., Thomas J. A., (Eds.). The Conservation of Insects and their Habitats. Academic Press, London: 160-212. ISBN: 9780124146112.
Weggler K., Dobbertin M., Jüngling E., Kaufmann E., Thürig E., 2012. Dead wood volume to dead wood carbon: the issue of conversion factors. European Journal of Forest Research, 131: 1423-1438. https://doi.org/10.1007/s10342-012-0610-0
Wende B., Gossner M. M., Grass I., Arnstadt T., Hofrichter M., Floren A., Linsenmair K. E., Weisser W. W., Steffan-Dewenter I., 2017. Trophic level, successional age and trait matching determine specialization of deadwood-based interaction networks of saproxylic beetles. Proceedings of the Royal Society B: Biological Sciences, 284(1854): 20170198. https://doi.org/10.1098/rspb.2017.0198
Weslien J., 1992. The arthropod complex associated with Ips typographus (L.)(Coleoptera, Scolytidae): species composition, phenology, and impact on bark beetle productivity. Entomologica Fennica, 3(4): 205-213. https://doi.org/10.33338/ef.83730
Wiens J. A. Schooley R. L., Weeks Jr R.D., 1997. Patchy landscapes and animal movements: do beetles percolate?. Oikos: 257-264. https://doi.org/10.2307/3546292
Winter S., Chirici G., McRoberts R. E., Hauk E., Tomppo E., 2008. Possibilities for harmonizing national forest inventory data for use in forest biodiversity assessments. Forestry, 81(1): 33-44. https://doi.org/10.1093/forestry/cpm042
Wright D. H., 1983. Species-energy theory: an extension of species-area theory. Oikos: 496-506. https://doi.org/10.2307/3544109
Zhou L., Dai L.M., Gu H.Y., Zhong L., 2007. Review on the decomposition and influence factors of coarse woody debris in forest ecosystem. Journal of Forestry Research, 18(1): 48-54. https://doi.org/10.1007/s11676-007-0009-9
Zuo J., Berg M. P., Klein R., Nusselder J., Neurink G., Decker O., Hefting M. M., Sass-Klaassen U., van Logtestijn R. S. P., Goudzwaard L., van Hal J., Sterck F. J., Poorter L., Cornelissen J. H. C., 2016a. Faunal community consequence of interspecific bark trait dissimilarity in early‐stage decomposing logs. Functional Ecology, 30(12): 1957-1966. https://doi.org/10.1111/1365-2435.12676
Zuo J., Berg M. P., van Hal J., van Logtestijn R. S. P., Goudzwaard L., Hefting M. M., Poorter L., Sterck F. J., Cornelissen J. H. C., 2021. Fauna community convergence during decomposition of deadwood across tree species and forests. Ecosystems, 24: 926-938. https://doi.org/10.1007/s10021-020-00558-9
Zuo J., Cornelissen J. H. C., Hefting M. M., Sass-Klaassen U., van Logtestijn R. S. P., van Hal J., Goudzwaard L., Liu J. C., Berg M. P., 2016b. The (w) hole story: facilitation of dead wood fauna by bark beetles?. Soil Biology and Biochemistry, 95: 70-77. https://doi.org/10.1016/j.soilbio.2015.12.015

Descărcări
Publicat
Cum cităm
Număr
Secțiune
Licență
Copyright (c) 2025 Ionuț Marian Dragomir

Această lucrare este licențiată în temeiul Creative Commons Attribution-NonCommercial 4.0 International License.
Licența Open Access
Toate articolele și materialele suplimentare publicate în revista BUCOVINA FORESTIERĂ sunt disponibile sub o politică de acces liber gratuit (Open Access Licence) descrisă de BOAI, ceea ce implică accesul liber (fără nici o taxă) și nelimitat, pentru toată lumea, la conținutul integral al acestora.
Publicarea manuscriselor este gratuită, toate cheltuielile fiind suportate de către Facultatea de Silvicultură din cadrul Universități „Ștefan cel Mare” din Suceava.